• 제목/요약/키워드: Cox Proportional Hazards

검색결과 247건 처리시간 0.019초

Diagnostics for the Cox model

  • Xue, Yishu;Schifano, Elizabeth D.
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.583-604
    • /
    • 2017
  • The most popular regression model for the analysis of time-to-event data is the Cox proportional hazards model. While the model specifies a parametric relationship between the hazard function and the predictor variables, there is no specification regarding the form of the baseline hazard function. A critical assumption of the Cox model, however, is the proportional hazards assumption: when the predictor variables do not vary over time, the hazard ratio comparing any two observations is constant with respect to time. Therefore, to perform credible estimation and inference, one must first assess whether the proportional hazards assumption is reasonable. As with other regression techniques, it is also essential to examine whether appropriate functional forms of the predictor variables have been used, and whether there are any outlying or influential observations. This article reviews diagnostic methods for assessing goodness-of-fit for the Cox proportional hazards model. We illustrate these methods with a case-study using available R functions, and provide complete R code for a simulated example as a supplement.

결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델 (Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates)

  • 육태미;송주원
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.279-291
    • /
    • 2012
  • 공변량에 결측이 발생한 Cox 비례위험 모형을 적합할 때, 결측이 발생하는 개체를 모두 제거한 후 분석을 실시한다면 정보 손실에 의해 비효율적이고 결측의 발생 메커니즘이 완전 임의 결측(missing completely at random; MCAR)이 아니라면 모수의 추정값에 편향이 발생할 수 있다. Cox 비례위험 회귀모형의 공변량에 결측이 있는 경우 적용할 수 있는 여러 가지 방법들이 제안되어져 왔으나 이 분석들은 선택모델(selection model)에 기반하고 있다. 본 연구에서는 Little (1993)이 제안한 패턴-혼합 모델(pattern-mixture model)을 사용하여 Cox 비례위험 회귀모형에서 생존시간과 결측 메커니즘의 결합분포를 모델화 하고, 여러 가지 제약에 근거한 생존 분석의 결과를 비교하였다. 모의실험을 통해서 패턴-혼합 모델의 제약(restrictions)에 따른 모수 추정의 민감도를 확인하였고 결측을 무시한 채 분석한 결과 및 선택모형에 근거한 분석결과와 비교하였다. 패턴-혼합 모델의 제약에 따라 공변량의 결측으로 인한 모수 추정의 민감성 정도를 쥐백혈병 자료 예제를 통해 설명하였다.

Goodness of Fit Tests of Cox's Proportional Hazards Model

  • Song, Hae-Hiang;Lee, Sun-Ho
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.379-402
    • /
    • 1994
  • Graphical and numerical methods for checking the assumption of proportional hazards of Cox model for censored survival data are discussed. The strenths and weaknessess of several goodness of fit tests for the propotional hazards for the two-sample problem are evaluated with Monte Carlo simulations, and the tests of Schoenfeld (1980), Andersen (1982), Wei (1984), and Gill and Schumacher (1987) are considered. The goodness of fit methods are illustrated with the survival data of patients who had chronic liver disease and had been treated with the endoscopy injection sclerotheraphy. Two other examples of data known to have nonpropotional hazards are also used in the illustration.

  • PDF

교차계획 구간절단 생존자료의 비례위험모형을 이용한 분석 (Analysis of Interval-censored Survival Data from Crossover Trials with Proportional Hazards Model)

  • 김은영;송혜향
    • 응용통계연구
    • /
    • 제20권1호
    • /
    • pp.39-52
    • /
    • 2007
  • 협심증 치료의 신약에 대한 교차계획 임상시험(crossover clinical trials)에서 신약의 효능을 알아보는 운동테스트(treadmill exercise test) 결과는 중도절단 생존시간(censored survival times)으로 측정된다. 이 논문에서는 교차계획에서 수집된 중도절단 생존자료의 여러 가지 분석법에 대해 설명한다. 중도절단을 감안한 비모수적 방법들과 층화 Cox 비례위험모형 (stratified Cox proportional hazards model)에 근거한 분석법이 제시되었다. 한편, 교차계획의 두 시기에 걸쳐 수집된 생존시간의 차(difference)로부터 구간절단자료(interval censored data)가 생성되며 이에 근거한 분석법으로서 이 논문에서는 구간절단자료에 대한 Cox 비례위험모형 (proportional hazards model)의 가능성을 알아보며, 예제 자료로써 여러 방법들의 결과를 비교해 본다.

기술평가 자료를 이용한 중소기업의 생존율 추정 및 생존요인 분석 (A Study on the Survival Probability and Survival Factors of Small and Medium-sized Enterprises Using Technology Rating Data)

  • 이영찬
    • 지식경영연구
    • /
    • 제11권2호
    • /
    • pp.95-109
    • /
    • 2010
  • The objectives of this study are to identify the survival function (hazard function) of small and medium enterprises by using technology rating data for the companies guaranteed by Korea Technology Finance Corporation (KOTEC), and to figure out the factors that affects their survival. To serve the purposes, this study uses Kaplan-Meier Analysis as a non-parametric method and Cox proportional hazards model as a semi-parametric one. The 17,396 guaranteed companies that assessed from July 1st in 2005 to December 31st in 2009 are selected as samples (16,504 censored data and 829 accident data). The survival time is computed with random censoring (Type III) from July in 2005 as a starting point. The results of the analysis show that Kaplan-Meier Analysis and Cox proportional hazards model are able to readily estimate survival and hazard function and to perform comparative study among group variables such as industry and technology rating level. In particular, Cox proportional hazards model is recognized that it is useful to understand which technology rating items are meaningful to company's survival and how much they affect it. It is considered that these results will provide valuable knowledge for practitioners to find and manage the significant items for survival of the guaranteed companies through future technology rating.

  • PDF

Convergence of Score process in the Cox Proportional Hazards Model

  • Hwang, Jin-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제26권1호
    • /
    • pp.117-130
    • /
    • 1997
  • We study the asymptotic behavior of the maximum partial likelihood estimator in the Cox proportional hazards model in the presence of nuisance parameters when the entry of patients is staggered. When entry of patients is simultaneous and there is only one regression parameter in the Cox model, the efficient score process of the partial likelihood is martingale and converges weakly to a time-chnaged Brownian motion. Our problem is to get a similar result in the presence of nuisance parameters when entry of patient is staggered.

  • PDF

Cox 비례위험모형을 이용한 우측 대장암 3기 자료 분석 (Analysis of stage III proximal colon cancer using the Cox proportional hazards model)

  • 이태섭;이민정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.349-359
    • /
    • 2017
  • 본 논문에서는 미국 국립암연구소의 SEER 프로그램에서 제공하는 우측 대장암 3기 자료에 Cox 비례위험모형을 적합하여 생존분석을 하였다. 우측 대장암 3기 환자의 사망률에 유의한 영향을 미치는 공변량들을 파악하고, 관심있는 공변량들을 가진 환자의 생존율을 추정하였다. Schoenfeld 잔차를 기반한 검정과 Schoenfeld 잔차 도표, $log[-log\{{\hat{S}}(t)\}]$ 도표를 이용하여 분석에 사용된 공변량들이 비례위험 가정을 만족함을 확인하였다. 적합된 Cox 비례위험모형의 타당성을 검증하기 위해 10-fold 교차 검증을 이용하여 calibration 도표와 시간에 의존하는 ROC 곡선 아래 면적을 계산하였다. 이를 통해 적합된 Cox 비례위험모형의 타당성을 확인하였다.

Estimating causal effect of multi-valued treatment from observational survival data

  • Kim, Bongseong;Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권6호
    • /
    • pp.675-688
    • /
    • 2020
  • In survival analysis of observational data, the inverse probability weighting method and the Cox proportional hazards model are widely used when estimating the causal effects of multiple-valued treatment. In this paper, the two kinds of weights have been examined in the inverse probability weighting method. We explain the reason why the stabilized weight is more appropriate when an inverse probability weighting method using the generalized propensity score is applied. We also emphasize that a marginal hazard ratio and the conditional hazard ratio should be distinguished when defining the hazard ratio as a treatment effect under the Cox proportional hazards model. A simulation study based on real data is conducted to provide concrete numerical evidence.

잔차에 기초한 비례위험모형의 회귀진단법 고찰 - PBC 자료를 통한 응용 연구 (Review on proportional hazards regression diagnostics based on residuas)

  • 이성임;박성현
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.233-250
    • /
    • 2002
  • Cox의 비례위험모형(proportional hazards model)은 생존자료(survival data)에 대한 회귀모형으로 경제학 및 의·공학을 비롯한 여러 응용 분야에서 가장 널리 쓰이고 있는 모형 중 하나이다. 그러나, 이 모형은 일반선헝모형에 비해 잔차 분석을 통한 회귀 진단의 연구가 널리 알려져 있지 않아, 국내의 실제 자료 분석에서는 잔차 분석에 대한 활용이 거의 이루어지지 않고 있는 실정이다. 이에 본 논문에서는 그 동안 제안된 여러 잔차들을 비교 분석하고, S-plus 프로그램을 이용한 PBC(primary biliary cirrhosis) 자료분석을 통해 각 잔차들의 의미를 고찰하고자 한다.

전자건강기록 데이터 기반 욕창 발생 예측모델의 개발 및 평가 (Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers)

  • 박슬기;박현애;황희
    • 대한간호학회지
    • /
    • 제49권5호
    • /
    • pp.575-585
    • /
    • 2019
  • Purpose: The purpose of this study was to develop predictive models for pressure ulcer incidence using electronic health record (EHR) data and to compare their predictive validity performance indicators with that of the Braden Scale used in the study hospital. Methods: A retrospective case-control study was conducted in a tertiary teaching hospital in Korea. Data of 202 pressure ulcer patients and 14,705 non-pressure ulcer patients admitted between January 2015 and May 2016 were extracted from the EHRs. Three predictive models for pressure ulcer incidence were developed using logistic regression, Cox proportional hazards regression, and decision tree modeling. The predictive validity performance indicators of the three models were compared with those of the Braden Scale. Results: The logistic regression model was most efficient with a high area under the receiver operating characteristics curve (AUC) estimate of 0.97, followed by the decision tree model (AUC 0.95), Cox proportional hazards regression model (AUC 0.95), and the Braden Scale (AUC 0.82). Decreased mobility was the most significant factor in the logistic regression and Cox proportional hazards models, and the endotracheal tube was the most important factor in the decision tree model. Conclusion: Predictive validity performance indicators of the Braden Scale were lower than those of the logistic regression, Cox proportional hazards regression, and decision tree models. The models developed in this study can be used to develop a clinical decision support system that automatically assesses risk for pressure ulcers to aid nurses.