• Title/Summary/Keyword: Coverage Simulation

Search Result 466, Processing Time 0.027 seconds

A Learning Automata-based Algorithm for Area Coverage Problem in Directional Sensor Networks

  • Liu, Zhimin;Ouyang, Zhangdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4804-4822
    • /
    • 2017
  • Coverage problem is a research hot spot in directional sensor networks (DSNs). However, the major problem affecting the performance of the current coverage-enhancing strategies is that they just optimize the coverage of networks, but ignore the maximum number of sleep sensors to save more energy. Aiming to find an approximate optimal method that can cover maximum area with minimum number of active sensors, in this paper, a new scheduling algorithm based on learning automata is proposed to enhance area coverage, and shut off redundant sensors as many as possible. To evaluate the performance of the proposed algorithm, several experiments are conducted. Simulation results indicate that the proposed algorithm have effective performance in terms of coverage enhancement and sleeping sensors compared to the existing algorithms.

SOC Bus Transaction Verification Using AMBA Protocol Checker

  • Lee, Kab-Joo;Kim, Si-Hyun;Hwang, Hyo-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • This paper presents an ARM-based SOC bus transaction verification IP and the usage experiences in SOC designs. The verification IP is an AMBA AHB protocol checker, which captures legal AHB transactions in FSM-style signal sequence checking routines. This checker can be considered as a reusable verification IP since it does not change unless the bus protocol changes. Our AHB protocol checker is designed to be scalable to any number of AHB masters and reusable for various AMBA-based SOC designs. The keys to the scalability and the reusability are Object-Oriented Programming (OOP), virtual port, and bind operation. This paper describes how OOP, virtual port, and bind features are used to implement AHB protocol checker. Using the AHB protocol checker, an AHB simulation monitor is constructed. The monitor checks the legal bus arbitration and detects the first cycle of an AHB transaction. Then it calls AHB protocol checker to check the expected AHB signal sequences. We integrate the AHB bus monitor into Verilog simulation environment to replace time-consuming visual waveform inspection, and it allows us to find design bugs quickly. This paper also discusses AMBA AHB bus transaction coverage metrics and AHB transaction coverage analysis. Test programs for five AHB masters of an SOC, four channel DMAs and a host interface unit are executed and transaction coverage for DMA verification is collected during simulation. These coverage results can be used to determine the weak point of test programs in terms of the number of bus transactions occurred and guide to improve the quality of the test programs. Also, the coverage results can be used to obtain bus utilization statistics since the bus cycles occupied by each AHB master can be obtained.

Analysis on the Effects of Building Coverage Ratio and Floor Space Index on Urban Climate (도시의 건폐율 및 용적률이 도시기후에 미치는 영향 분석)

  • Yeo, In-Ae;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.19-27
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate were analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1) The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. According to the building height, the highest temperature was increased by $2.1^{\circ}C$ from 2-story to 5-story building and the absolute humidity by 2.1g/kg maximum and the wind velocity by 1.0m/s was decreased from 2-story to 20-story building. (2) Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature. In the last, deriving the combination of building coverage and building height is needed to obtain effectiveness of the urban built environment planning at the point of the urban climate. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analyzing urban climate phenomenon.

Throughput Analysis of Non-Transparent Mode in IEEE 802.16j Mobile Multi-Hop Relay Networks (IEEE 802.16j MMR 네트워크에서 Non-Transparent 중계모드의 전송률 분석)

  • Lee, Ju-Ho;Lee, Goo-Yeon;Jeong, Choong-Kyo
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.51-58
    • /
    • 2012
  • In IEEE 802.16j MMR protocol, two modes about usage of RS are proposed; one is transparent mode to enhance data throughput and the other is non-transparent mode to extend coverage. In this paper, we focus on non-transparent mode and find that the mode can also improve data throughput. Therefore, we analyze data throughput on various RS topology and their extended coverage area by simulation in IEEE 802.16j non-transparent mode. We also compare the simulation results with the single MR-BS system of which coverage is extended by higher transmission power. From the comparisons of simulation results, we see that higher throughput can be obtained in the proposed non-transparent mode.

EBKCCA: A Novel Energy Balanced k-Coverage Control Algorithm Based on Probability Model in Wireless Sensor Networks

  • Sun, Zeyu;Zhang, Yongsheng;Xing, Xiaofei;Song, Houbing;Wang, Huihui;Cao, Yangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3621-3640
    • /
    • 2016
  • In the process of k-coverage of the target node, there will be a lot of data redundancy forcing the phenomenon of congestion which reduces network communication capability and coverage, and accelerates network energy consumption. Therefore, this paper proposes a novel energy balanced k-coverage control algorithm based on probability model (EBKCCA). The algorithm constructs the coverage network model by using the positional relationship between the nodes. By analyzing the network model, the coverage expected value of nodes and the minimum number of nodes in the monitoring area are given. In terms of energy consumption, this paper gives the proportion of energy conversion functions between working nodes and neighboring nodes. By using the function proportional to schedule low energy nodes, we achieve the energy balance of the whole network and optimizing network resources. The last simulation experiments indicate that this algorithm can not only improve the quality of network coverage, but also completely inhibit the rapid energy consumption of node, and extend the network lifetime.

CCAJS: A Novel Connect Coverage Algorithm Based on Joint Sensing Model for Wireless Sensor Networks

  • Sun, Zeyu;Yun, Yali;Song, Houbing;Wang, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5014-5034
    • /
    • 2016
  • This paper discusses how to effectively guarantee the coverage and connectivity quality of wireless sensor networks when joint perception model is used for the nodes whose communication ranges are multi-level adjustable in the absence of position information. A Connect Coverage Algorithm Based on Joint Sensing model (CCAJS) is proposed, with which least working nodes are chosen based on probability model ensuring the coverage quality of the network. The algorithm can balance the position distribution of selected working nodes as far as possible, as well as reduce the overall energy consumption of the whole network. The simulation results show that, less working nodes are needed to ensure the coverage quality of networks using joint perception model than using the binary perception model. CCAJS can not only satisfy expected coverage quality and connectivity, but also decrease the energy consumption, thereby prolonging the network lifetime.

A Comparison Study for the Confidence Intervals of the Common Odds Ratio in the Stratified 2 X 2 Tables Using the Average Coverage Probability

  • Kwak, Min Jung;Jeong, Hyeong Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.779-793
    • /
    • 2003
  • In this paper, various methods for finding confidence intervals for common odds ratio $\psi$ of the K 2${\times}$2 tables are reviewed. Also we propose two jackknife confidence intervals and bootstrap confidence intervals for $\psi$. These confidence intervals are compared with the other existing confidence intervals by using Monte Carlo simulation with respect to the average coverage probability.

A Study on the Target Coverage of the ICM (개량고폭탄의 표적제압에 관한 연구)

  • Choe Gwang-Muk;Min Gye-Ryo
    • Journal of the military operations research society of Korea
    • /
    • v.12 no.1
    • /
    • pp.50-70
    • /
    • 1986
  • When the ICM is fired in the artillery weapon, it is necessary to determine rounds of munitions for sufficient damage to targets of different sizes and shapes. This paper analyzes all kinds of delivery errors involved in ICM firing, and then develops the target coverage model appropriate for ICM salvos. This model is evaluated through computer simulation. The expected target coverage is measured according to number of salvos, range and probable error, velocity error, battery arrangement, target size, and shell reliability respectively.

  • PDF

Full-Coverage algorithm with local obstacle avoidance algorithm (지역적 회피 알고리즘을 갖는 Full-Coverage 알고리즘)

  • Park G-M.;Son Y-D.;Kim Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1468-1471
    • /
    • 2005
  • This Paper is to find out a solution for the full-coverage algorithm requiring the real-time processing such as mobile home service robots and vacuum cleaner robots. Previous methods are used by adopting based grid approach method. They used lots of sensors, a high speed CPU, expensive ranger sensors and huge memory. Besides, most full-coverage algorithms should have a map before obstacle avoidance. However, if a robot able to recognize the tangent vector of obstacles, it is able to bring the same result with less sensors and simplified hardware. Therefore, this study suggests a topological based approach and a local obstacle voidance method using a few of PSD sensors and ultra sonic sensors. The simulation results are presented to prove its applicability.

  • PDF