This study aims at suggesting the attributes and limitations of each methods through the evaluation of the verified analysis results, so that it will be possible to select an efficient method that may be applied to assess the green coverage ratio. Green coverage areas of each sites subject to this study were assessed utilizing the following four methods. First, assessment of green coverage area through direct planimetry of satellite images. Second, assessment of green coverage area using land cover map. Third, assessment of green coverage area utilizing the band value in satellite images. Forth, assessment of green coverage area using and land cover map and reference materials. For this study, four urban zones of the City of Seosan in Chungcheongnam-do. As a result, this study show that the best calculation method is the one that combines the merits of first and second methods. This method is expected to be suitable for application in research sites of middle size and above. It is also deemed that it will be possible to apply this method in researches of wide area, such as setting up master plans for parks and green zones established by each local self-government organizations.
Land cover types of Hustai National Park (HNP) in Mongolia, a hotspot area with rare species, were classified and their temporal changes were evaluated using Landsat MSS TM/ETM data between 1994 and 2000. Maximum likelihood classification analysis showed an overall accuracy of 88.0% and 85.0% for the 1994 and 2000 images, respectively. Kappa coefficients associated with the classification were resulted to 0.85 for 1994 and 0.82 for 2000 image. Land cover types revealed significant temporal changes in the classification maps between 1994 and 2000. The area has increased considerably by $166.5km^2$ for mountain steppe. By contrast, agricultural areas and degraded areas affected by human being activity were decreased by $46.1km^2$ and $194.8km^2$ over the six year span, respectively. These areas were replaced by mountain steppe area. Specifically, forest area was noticeably fragmented, accompanied by the decrease of $\sim400$ ha. The forest area revealed a pattern with systematic gain and loss associated with the specific phenomenon called as forest free-south slope. We discussed the potential environmental conditions responsible for the systematic pattern and addressed other biological impacts by outbreaks of forest pests and ungulates.
There have been rapid increases to the demands for modeling diverse and complex spatial phenomena and utilizing spatial data through the computer across all the aspects of society. As a result, the importance and utilization of remote sensing and GIS's(geographic information systems) have also increased. It can produce digital data of enormous accuracy and value by incorporating remote sensing images into GIS analysis technology and make various thematic maps by classifying and analyzing land cover. Once such a map is made for the target area, it can easily do modeling and constant monitoring based on the map, revise the database with ease, and thus efficiently update geo-spatial information. Under the goal of analyzing changes to land cover along the road by combining the remote sensing and GIS technology, this study classified land cover from the images of two periods, detected changes to the six classes over ten years, and obtained statistics about the study area's quantitative area changes in order to provide basic decision making data for urban planning and development. By analyzing land use along the road, one can set up plans for the area along the road and the downtown to supplement each other.
Speckle noise has been a primary concern to many applications of synthetic aperture radar (SAR) imagery. In recent years, several satellites with radar imaging systems were launched and the use of SAR data are expected to be increased rapidly The objectives of this study are to provide introductory understanding on radar speckle filtering and to compare the effects of several filtering methods that are relatively unknown to user community. Two study sites were extracted from the RADARSAT SAR data obtained over the suburban areas near Seoul. The study sites include relatively homogeneous cover types, such as reservoir, parking lot, rice pad, and deciduous forest. Five filters (mean filter, median filter, sigma filter, local statistics filter, and autocorrelation filter) were applied to the SAR imagery and their effects were evaluated from the aspects of both image smoothing and edge preservation. In overall, the evaluation results indicate that the local statistics filter and autocorrelation filter, that are based on a speckle model, are more effective to suppress speckle within homogeneous cover type while maintaining the edge sharpness between cover types.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.1
/
pp.7-12
/
2019
Clouds in the atmosphere are important variables that affect the temperature change by reflecting the radiant energy of the earth surface as well as changing the amount of sunshine by reflecting the sun's radiation energy. Especially, the amount of sunshine on the surface is very important It is essential information. Therefore, eye-observations of the sky on the surface of the earth have been enhanced by satellite photographs or relatively narrowed observation equipments. Therefore, cloud automatic observing systems have been developed in order to replace the human observers, but depending on the seasons, the reliability of observations is not high enough to be applied in the field due to pollutants or fog in the atmosphere. Therefore, we have developed a cloud observation algorithm that is robust against smog and fog. It is based on the calculation of the degree of aerosol from the all-sky image, and is added to the developed cloud reader to develop season- and climate-insensitive algorithms to improve reliability. The result compared to existing cloud readers and the result of cloud cover is improved.
Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.
Journal of the Korean Association of Geographic Information Studies
/
v.23
no.4
/
pp.52-67
/
2020
Recently, the Arctic has been exposed to snow-covered land due to melting permafrost every year, and the Korea Geographic Information Institute(NGII) provides polar spatial information service by establishing spatial information of the polar region. However, there is a lack of spatial information on vegetation sensitive to climate change. This research used a multi-temporal Sentinel-2 image to perform land cover classification of the Ny-Ålesund in Arctic Svalbard. In the pre-processing step, 10 bands and 6 vegetation spectral index were generated from multi-temporal Sentinel-2 images. In image-classification step is consisted of extracting the vegetation area through 8-class land cover classification and performing the vegetation species classification. The image classification algorithm used Random Forest to evaluate the accuracy and calculate feature importance through Out-Of-Bag(OOB). To identify the advantages of multi- temporary Sentinel-2 for vegetation classification, the overall accuracy was compared according to the number of images stacked and vegetation spectral index. Overall accuracy was 77% when using single-time Sentinel-2 images, but improved to 81% when using multi-time Sentinel-2 images. In addition, the overall accuracy improved to about 83% in learning when the vegetation index was used additionally. The most important spectral variables to distinguish between vegetation classes are located in the Red, Green, and short wave infrared-1(SWIR1). This research can be used as a basic study that optimizes input characteristics in performing the classification of vegetation in the polar regions.
The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.
Journal of the Korean association of regional geographers
/
v.7
no.1
/
pp.35-50
/
2001
Since remotely sensed images of coastal wetlands are very sensitive to spatial resolution, it is very important to select an optimum resolution for particular geographic phenomena needed to be represented. Scale is one of the most important factors in spatial analysis techniques, which is defined as a spatial and temporal interval for a measurement or observation and is determined by the spatial extent of study area or the measurement unit. In order to acquire the optimum scale for a particular subject (i.e., coastal wetlands), measuring and representing the characteristics of attribute information extracted from the remotely sensed images are required. This study aims to explore and analyze the scale effects of attribute information extracted from remotely sensed coastal wetlands images. Specifically, it is focused on identifying the effects of scale in response to spatial resolution changes and suggesting a methodology for exploring the optimum spatial resolution. The LANDSAT TM image of Sunchon Bay was classified by a supervised classification method, Six land cover types were classified and the Kappa index for this classification was 84.6%. In order to explore the effects of scale in the classification procedure, a set of images that have different spatial resolutions were created by a aggregation method. Coarser images were created with the original image by averaging the DN values of neighboring pixels. Sixteen images whose resolution range from 30 m to 480 m were generated and classified to obtain land cover information using the same training set applied to the initial classification. The values of Kappa index show a distinctive pattern according to the spatial resolution change. Up to 120m, the values of Kappa index changed little, but Kappa index decreased dramatically at the 150m. However, at the resolution of 240 m and 270m, the classification accuracy was increased. From this observation, the optimum resolution for the study area would be either at 240m or 270m with respect to the classification accuracy and the best quality of attribute information can be obtained from these resolutions. Procedures and methodologies developed from this study would be applied to similar kinds and be used as a methodology of identifying and defining an optimum spatial resolution for a given problem.
Journal of the Korean Association of Geographic Information Studies
/
v.15
no.1
/
pp.144-158
/
2012
A higher spatial resolution is preferable to support the accuracy of detailed climate analysis in urban areas. Airborne LiDAR (Light Detection And Ranging) and satellite (KOMPSAT-2, Korea Multi-Purpose Satellite-2) images at 1 to 4 m resolution were utilized to produce digital elevation and building surface models as well as land cover maps at very high(5m) resolution. The Climate Analysis Seoul(CAS) was used to calculate the fractional coverage of land cover classes in built-up areas and thermal capacity of the buildings from their areal volumes. It then produced analyzed maps of local-scale temperature based on the old and new input data. For the verification of the accuracy improvement by the precise input data, the analyzed maps were compared to the surface temperature derived from the ASTER satellite image and to the ground observation at our detailed study region. After the enhancement, the ASTER temperature was highly correlated with the analyzed temperature at building (BS) areas (R=0.76) whereas there observed no correlation with the old input data. The difference of the air temperature deviation was reduced from 1.27 to 0.70K by the enhancement. The enhanced precision of the input data yielded reasonable and more accurate local-scale temperature analysis based on realistic surface models in built-up areas. The improved analysis tools can help urban planners evaluating their design scenarios to be prepared for the urban climate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.