• Title/Summary/Keyword: Cover-image

Search Result 715, Processing Time 0.04 seconds

A 2-D Image Camera Calibration using a Mapping Approximation of Multi-Layer Perceptrons (다층퍼셉트론의 정합 근사화에 의한 2차원 영상의 카메라 오차보정)

  • 이문규;이정화
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.487-493
    • /
    • 1998
  • Camera calibration is the process of determining the coordinate relationship between a camera image and its real world space. Accurate calibration of a camera is necessary for the applications that involve quantitative measurement of camera images. However, if the camera plane is parallel or near parallel to the calibration board on which 2 dimensional objects are defined(this is called "ill-conditioned"), existing solution procedures are not well applied. In this paper, we propose a neural network-based approach to camera calibration for 2D images formed by a mono-camera or a pair of cameras. Multi-layer perceptrons are developed to transform the coordinates of each image point to the world coordinates. The validity of the approach is tested with data points which cover the whole 2D space concerned. Experimental results for both mono-camera and stereo-camera cases indicate that the proposed approach is comparable to Tsai's method[8]. Especially for the stereo camera case, the approach works better than the Tsai's method as the angle between the camera optical axis and the Z-axis increases. Therefore, we believe the approach could be an alternative solution procedure for the ill -conditioned camera calibration.libration.

  • PDF

Light 3D Modeling with mobile equipment (모바일 카메라를 이용한 경량 3D 모델링)

  • Ju, Seunghwan;Seo, Heesuk;Han, Sunghyu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.107-114
    • /
    • 2016
  • Recently, 3D related technology has become a hot topic for IT. 3D technologies such as 3DTV, Kinect and 3D printers are becoming more and more popular. According to the flow of the times, the goal of this study is that the general public is exposed to 3D technology easily. we have developed a web-based application program that enables 3D modeling of facial front and side photographs using a mobile phone. In order to realize 3D modeling, two photographs (front and side) are photographed with a mobile camera, and ASM (Active Shape Model) and skin binarization technique are used to extract facial height such as nose from facial and side photographs. Three-dimensional coordinates are generated using the face extracted from the front photograph and the face height obtained from the side photograph. Using the 3-D coordinates generated for the standard face model modeled with the standard face as a control point, the face becomes the face of the subject when the RBF (Radial Basis Function) interpolation method is used. Also, in order to cover the face with the modified face model, the control point found in the front photograph is mapped to the texture map coordinate to generate the texture image. Finally, the deformed face model is covered with a texture image, and the 3D modeled image is displayed to the user.

Investigating Ways of Developed and Undeveloped Features from Satellite Images -Balancing Coastal Development and Preservation- (위성영상을 이용한 개발과 미개발 지역의 구분을 위한 탐색적 방법)

  • Yang, Byung-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • This research attempted to find possibilities of the practical use utilizing geospatial methods for the balanced promotion of sustainable coastal development and preservation through a case study of Jekyll Island, one of Georgia's barrier islands. In response, this research provided ways for practical use in sustainable development and preservation plans. First this research thoroughly investigated the 1996 master plan of Jekyll Island and tried to recalculate developed and undeveloped areas. Second, new estimations for developed areas were investigated through field survey. Third, this research proposed the use of the satellite images with different levels of spatial resolutions and tested different classification schemes to find possibilities for practical use. For these purposes, first, we classified developed and undeveloped features by manual digitization using an aerial photo image with 0.5m spatial resolution. Second, a Landsat 7 ETM+ and a QuickBird satellite images with mid- and high-levels of spatial resolutions were applied to identify developed and undeveloped areas using both the National Land Cover Data (NLCD) and the Coastal Change Analysis Program (CCAP) classification schemes. Also, GEOBIA (Geographic Object-Based Image Analysis) was conducted to accurately identify developed and undeveloped areas.

The Land Surface Temperature Analysis of Seoul city using Satellite Image (위성영상을 통한 서울시 지표온도 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • The propose of this study is to analyze the optimum spatial resolution of the urban spatial thermal environment structure and to evaluate of the possibility detection using aerial photographs and thermal satellite images. The proper techniques of the optimum spatial resolution for the urban spatial thermal environment structure were analyzed. Thermal infrared satellite image of Seoul city were used for the change rate of surface temperature variation and suggested to the spatial extent and effects of urban surface characteristics and spatial data was interpreted as regions. To extract the surface temperature, Landsat thermal infrared satellite image compared with an automatic weather station data and in the field of the measured temperature and surface temperature by thermal environment affects, the spatial domain has been verified. The surface temperature of the satellite images to extract after adjusting surface temperature isotherms were constructed. The changes in surface temperature from 2008 to 2012 the average surface temperature observation images of changing areas were divided into space. The results of this study are as follows: Through analysis of satellite imagery, Seoul city surface temperature change due to extraction comfort indices were classified into four grades. The comfort index indicative of the temperature of Gangnam-gu, $23.7{\sim}27.2(^{\circ}C)$ range and Songpagu, a $22.7{\sim}30.6(^{\circ}C)$ respectively, the surface temperature of Yeouido $25.8{\sim}32.6(^{\circ}C)$ were in the range.

Two-level Information Hiding Method for the Transmission of Military Secret Images (군사용 비밀 영상 전송을 위한 이단계 정보은닉 기법)

  • Kim, In-Taek;Kim, Jae-Cheol;Lee, Yong-Kyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.482-491
    • /
    • 2011
  • The purpose of this study is to design and implement a 2-level secret information transmission system which can be used for information hiding of images transmitted over various IT communication media. To increase the robustness of the hiding power, we combined the steganography method which inserts secret object into cover object to hide the very fact of information hiding itself, and the preprocessing stage to encrypt the secret object before the stego-insertion stage. As a result, even when the stego-image is broken by an attacker, the secret image is protected by encryption. We implemented the 2-level image insertion and extraction algorithm by using C++ programming language. Experiment shows that the PSNR values of stego-images of ours exceed 30.00db which is the threshold of human recognition. The methodology of this study can be applied broadly to the information hiding and protection of the military secret images.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF

Land Cover Change Detection in the Nakdong River Basin Using LiDAR Data and Multi-Temporal Landsat Imagery (LiDAR DEM과 다중시기에 촬영된 Landsat 영상을 이용한 낙동강 유역 내 토지피복 변화 탐지)

  • CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.135-148
    • /
    • 2015
  • This research is carried out for the land cover change detection in the Nakdong River basin before and after the 4 major rivers restoration project using the LiDAR DEM(Digital Elevation Model) and the multi-temporal Landsat imagery. Firstly the river basin polygon is generated by using the levee boundaries extracted from the LiDAR DEM, and the four river basin imagery are generated from the multi-temporal Landsat-5 TM(Thematic Mapper) and Landsat-8 OLI(Operational Land Imager) imagery by using the generated river basin polygon. Then the main land covers such as river, grass and bare soil are separately generated from the generated river basin imagery by using the image classification method, and the ratio of each land cover in the entire area is calculated. The calculated land cover changes show that the areas of grass and bare soil in the entire area have been significantly changed because of the seasonal change, while the area of the river has been significantly increased because of the increase of the water storage. This paper contributes to proposing an efficient methodology for the land cover change detection in the Nakdong River basin using the LiDAR DEM and the multi-temporal satellite imagery taken before and after the 4 major rivers restoration project.

Automatic Generation of Land Cover Map Using Residual U-Net (Residual U-Net을 이용한 토지피복지도 자동 제작 연구)

  • Yoo, Su Hong;Lee, Ji Sang;Bae, Jun Su;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.535-546
    • /
    • 2020
  • Land cover maps are derived from satellite and aerial images by the Ministry of Environment for the entire Korea since 1998. Even with their wide application in many sectors, their usage in research community is limited. The main reason for this is the map compilation cycle varies too much over the different regions. The situation requires us a new and quicker methodology for generating land cover maps. This study was conducted to automatically generate land cover map using aerial ortho-images and Landsat 8 satellite images. The input aerial and Landsat 8 image data were trained by Residual U-Net, one of the deep learning-based segmentation techniques. Study was carried out by dividing three groups. First and second group include part of level-II (medium) categories and third uses group level-III (large) classification category defined in land cover map. In the first group, the results using all 7 classes showed 86.6 % of classification accuracy The other two groups, which include level-II class, showed 71 % of classification accuracy. Based on the results of the study, the deep learning-based research for generating automatic level-III classification was presented.

Development of Plant Phenology and Snow Cover Detection Technique in Mountains using Internet Protocol Camera System (무인카메라 기반 산악지역 식물계절 및 적설 탐지 기술 개발)

  • Keunchang, Jang;Jea-Chul, Kim;Junghwa, Chun;Seokil, Jang;Chi Hyeon, Ahn;Bong Cheol, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • Plant phenology including flowering, leaf unfolding, and leaf coloring in a forest is important to understand the forest ecosystem. Temperature rise due to recent climate change, however, can lead to plant phenology change as well as snowfall in winter season. Therefore, accurate monitoring of forest environment changes such as plant phenology and snow cover is essential to understand the climate change effect on forest management. These changes can monitor using a digital camera system. This paper introduces the detection methods for plant phenology and snow cover at the mountain region using an unmanned camera system that is a way to monitor the change of forest environment. In this study, the Automatic Mountain Meteorology Stations (AMOS) operated by Korea Forest Service (KFS) were selected as the testbed sites in order to systematize the plant phenology and snow cover detection in complex mountain areas. Multi-directional Internet Protocol (IP) camera system that is a kind of unmanned camera was installed at AMOS located in Seoul, Pyeongchang, Geochang, and Uljin. To detect the forest plant phenology and snow cover, the Red-Green-Blue (RGB) analysis based on the IP camera imagery was developed. The results produced by using image analysis captured from IP camera showed good performance in comparison with in-situ data. This result indicates that the utilization technique of IP camera system can capture the forest environment effectively and can be applied to various forest fields such as secure safety, forest ecosystem and disaster management, forestry, etc.