• Title/Summary/Keyword: Cover Depth

Search Result 430, Processing Time 0.024 seconds

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 1. Simulation of Sediment Produce and its Verification (유역 내에서의 산사태에 의한 토사발생특성 분석 1. 토사발생모의 및 검증)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Kim, Seong-Joon;Lee, Mi-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.133-145
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. As the results considering on recovery of the failed slopes, much amount of sediment was produced in 1963, 1970, and 2002. As the results of verification of simulation results using Landsat 5 TM images, we can find differences of landslide location between the results from model and satellite images. These differences can be caused by uncertainties of the rough parameters in the model. However, in the case that Obong-dam basin was divided into two subbasin, Wangsan-chun and Doma-chun basin, the results of each subbasin show errors around 20%. And only 4% of error occurred in the case of comparing landslide area on the entire Obong-dam basin. These errors seem insignificant considering on the errors which can be caused from the analyses in this study such as estimation of sediment produce, soil cover classification, and estimation of landslide area.

Actual Vegetation of Dodamsambong (Scenic Site no. 44) and Danyangseokmoon (Scenic Site no. 45) in Danyang-gun (단양군 도담삼봉과 단양석문 일대의 현존식생)

  • Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2014
  • The description of vegetation cover and floral composition was undertaken in terms of phytosociological study in Dodamsambong(scenic site no. 44) and Danyangseokmoon(no. 45). In this study a total of 17 $relev{\acute{e}}s$ containing 144 taxa were collected and analyzed. Eight plant communities are differentiated, grouped into 4 physiognomic types: forest type(Buxus microphylla var. koreana-Thuja orientalis community, Tilia mandshurica-Quercus variabilis community, and Cynanchum wilfordii-Pinus densiflora community), mantle type(Cardamine leucantha-Neillia uekii community), secondary meadow type(Galium kinuta-Spodiopogon sibiricus community, Diarthron linifolium-Zoysia japonica community), and crevice type(Patrinia rupestris-Selaginella stauntoniana community, Hypodematium glandulosopilosum community). The vegetation of Dodamsambong and Danyangseokmoon is characterized by local flora, such as calciphilous plants, geological distribution-limit species, and endemic species. The soil depth, slope, and human impact have been identified as the most important differentiating ecological factors. Buxus microphylla var. koreana-Thuja orientalis community, Tilia mandshurica-Quercus variabilis community, and Patrinia rupestris-Selaginella stauntoniana community were evaluated highly by National Vegetation Naturalness. In order to restore the value of specific landscape for scenic site, we should improve the problems of protected area such as wrong management on habitat, forest fragmentation by facilities and decline in vegetation by lack of growing the next succession.

Cyclic Seismic Testing of Concrete-filled U-shaped Steel Beam-to-Steel Column Connections (콘크리트채움 U형 강재보-강재기둥 합성 내진접합부에 대한 주기하중 실험)

  • Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.337-347
    • /
    • 2011
  • In this study, seismic resistance of concrete encased U-shaped steel beam-to-steel H-shaped column connections was evaluated. Three specimens of the beam-to-column connection were tested under cyclic loading. The composite beam was integrated with concrete slab using studs. Re-bars for negative moment were placed in the slab. The primary test parameter was the details of the connections, which are strengthening and weakening strategies for the beam end and the degree of composite action. The depth of the composite beams was 600mm including the slab thickness. The steel beam and the re-bars in the slab were weld-connected to the steel column. For the strengthening strategy, cover plates were weld-connected to the bottom and top flanges of the steel beam. For the weakening strategy, a void using styrofoam box was located inside the core concrete at the potential plastic hinge zone. The test results showed that the fully composite specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity of the beam exceeded 4% rotation angle, which is the requirement for the Special Moment Frame.

Fertility Evaluation of Tobacco Field by Quantitative and Qualitative Characteristics of Soils (토양의 정량적 및 정성적 특성을 이용한 연초 경작지의 비옥도 평가)

  • 홍순달;김기인;이윤환;정훈채;김용연
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 2000
  • Evaluation method of soil fertility by combination of soil color characteristics and survey data from soil map as well as chemical properties was investigated on total 35 field and pot experiments. Total 35 tobacco fields including 11 fields located at Cheonweon county in Chungnam Province, 9 fields located at Goesan county in Chungbuk Province, and 15 fields located at Youngcheon county in Kyongbuk Province were selected in 1984 to cover the wide range of distribution in landscape and soil attributes. Yields of tobacco grown on the plots of both the pot and field experiment which were not applied with any fertilizer were considered as basic fertility of the soil (BFS). The BFS was estimated by 32 independent variables including 15 chemical properties, 3 color characteristics, and 14 soil survey data from soil map. Twenty-four independent variables containing 16 quantitative variables selected from 24 quantitative variables by collinearity diagnostics and 8 qualitative variables, were classified and analyzed by multiple linear regression (MLR) of REG and GLM models of SAS. Tobacco yield of field experiment showed high variations by eight times in difference between minimum and maximum yield indicating the diverse soil fertility among the experimental fields. Evaluation for the BFS by the MLR including quantitative variables was still more confidential than that by a single index and that showed more improvement of coefficient of determination ($R^2$) in pot experiment than in field experiment. Evaluation for the BFS by MLR in field experiment was still improved by adding qualitative variables as well as quantitative variables. The variability in the BFS of field experiment was explained 43.2% by quantitative variables and 67.95% by adding both the quantitative and qualitative variables compared with 21.7% by simple regression with NO$_3$-N content in soil. The regression evaluation for the best evaluation of the BFS of field experiment by MLR included NO$_3$-N content, L value, and a value of soil color as quantitative variables and available soil depth and topography as qualitative variables. Consequently, it is assumed that this approach by the MLR including both the quantitative and qualitative variables was available as an evaluation model of soil fertility for tobacco field.

  • PDF

Service Life Evaluation through Probabilistic Method Considering Time-Dependent Chloride Behavior (염해 시간의존성을 고려한 확률론적 내구수명 평가)

  • Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The service life in RC (Reinforced Concrete) is very important and it is usually obtained through deterministic method based on Fick's 2nd law and probabilistic method. This paper presents an evaluation of $P_{df}$(durability failure probability) and the related service life considering time-dependent behaviors in chloride diffusion and surface chloride content. For the work, field investigation is performed for RC structures exposed to chloride attack for 3.5~4.5years, focusing tidal zone (6.0 m) and sea shore (9.0 m), respectively. Random variables like cover depth, chloride diffusion coefficient, and surface chloride content are obtained, and $P_{df}$ and the service life are evaluated. Unlike the results from deterministic method using LIFE 365, probabilistic method with time effects on diffusion and surface chloride shows a relatively rapid change in the result, which is a significant reductions of service life in the case with low surface chloride content. For probabilistic evaluation of durability, high surface chloride content over $10.0kg/m^3$ is required and reasonable service life can be derived with consideration of time-dependent diffusion coefficient.

Prediction Model of Remaining Service Life of Concrete for Irrigation Structures by Measuring Carbonation (중성화 측정을 통한 콘크리트의 잔존수명 예측 모델)

  • Lee, Joon-Gu;Park, Kwang-Soo;Kim, Han-Joung;Lee, Joung-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.529-540
    • /
    • 2003
  • Recently, the researches on the durability design of concrete structures have been studied. As the examples, models to evaluate the service life prediction of the structure have been developed. The purpose of this article is to develop the model for predicting remaining service life. The final aim is to provide the user time for repairing the concrete structures. In addition, it makes possible to maintain the concrete structure economically. 70 reservoirs out of the inland concrete structures were selected and concrete structures of their components were surveyed. Two methods were used for measuring carbonation; TG/DTA method and Phenolphtalein indicator and, the value of pH was measured by the pH meter, After deriving correlations of calcium carbonate and used year, duration from completion year to 2002, pH value, and concrete cover depth the model was developed for predicting remaining service life by measuring data as small as possible. The conventional models had been developed on the basis of experiment data obtained from the restricted lab environment like as carbon gas exposure. On the other hand this model was developed on the basis of measuring data obtained from the real field that the complex deterioration actions are occurred such as freezing and thawing, carbonation, steel corrosion, and so on. The reliability of the developed model will be evaluated high in this point and this model can help to maintain concrete structures economically by providing the manager time to repair the deteriorated concrete structures in site of facility management.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

Chemical Characteristics of Plastic Film House Soils in Chungbuk Area (충북(忠北) 지역(地域) 시설재배(施設栽培) 토양(土壤)의 화학적(化學的) 특성(特性))

  • Kang, Bo-Koo;Jeong, In-Myeong;Kim, Jai-Joung;Hong, Soon-Dal;Min, Kyeong-Beom
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.265-271
    • /
    • 1997
  • The salt accumulation, and chemical properties of 90 samples of the plastic film house soil in the area of Cheongju and Chungju were surveyed. Soil textural distribution of soil samples was 30% for sandy loam, 27% for loam and 43% for silty loam. Percentage distribution of electrical conductivity(EC) of surface soil was 23% below $2dS\;m^{-1}$, 30% for $2{\sim}4dS\;m^{-1}$, 25% for $4{\sim}6dS\;m^{-1}$ and 22% over $6dS\;m^{-1}$. Salt affected soil, which EC was higher than $4dS\;m^{-1}$, covered nearly 50% of all field surveyed. However subsoils(20~30cm) below $2dS\;m^{-1}$ was 68%. Salts in plastic film house soil was accumulated by increasing the cultivation period. After 5 years of cultivation electrical conductivity in plastic house soil was generally higher than $4.47dS\;m^{-1}$ in EC that was 2.8~5.6 times higher than that in the field soil in the outside of plastic film house. As the result of temporary removal of plastic film cover from the house during the rainy summer season, salt content in soil was decreased from $3.54{\sim}7.36dS\;m^{-1}$ to $0.71{\sim}2.92dS\;m^{-1}$ in EC due to the desalinization by runoff and percolating water. Contents of $NO_3-N$, $SO_4-S$ and Cl in plastic film house soil were 2.5. 7.0 and 3.4 times higher than those of open field respectively.

  • PDF

A Study on the Method for Ecological Restoration on Abandoned Concrete-paved Road - Focused on the Experimental Construction Site in Young Dong Province of GyungBu Express Highway(227.24~229.04km) - (콘크리트 폐도의 생태복원 방안 모색에 관한 연구 - 경부선 영동군 황간지역 시험시공지를 중심으로(경부고속도로 227.24~229.04km 지점) -)

  • Kim, Nam Choon;Ann, Phil Gun;No, Su Dae;Kim, Do Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.4
    • /
    • pp.119-132
    • /
    • 2012
  • The unmanaged abandoned concrete roads are vulnerable toward the issues on soil and water pollution, which requires flexible managing method such as eco-corridor after the process of ecological restoration. Among various alternations of abandoned concrete-paved roads, ecological restoration technique may be the most suitable method in sites including high quality of natural environment. Therefore, as in Young dong province, GyungBu express highway (227.24~229.04km), which is near to Hwang-gan IC, the survey to measure its effect of soil under the paving and water pollution by abandoned concrete roads was discussed. Then, the restoration method of plantings of landscape trees and hydro-seeding methods of artificial soil media was appraised through consecutive monitoring. The soil adequacy analysis shows lower percentage of heavy metal substance in each depth level compared to standard limit stated by the Ministry of Environment, along with low concerns raised after the analysis on heavy metal content of the spilled water on the concrete roads. Meanwhile, Korean Weigela (Weigela subsessilis L.H. Baily) was found to be withered in small-scale landscape trees planting sites. Among the seeding plants. the family of leguminosae, Silene armeria, Dendranthema boreale, Caryopteris incana and Aster yomena show good establishment results. Overall studies on planting of small and large landscape trees, planting method of container plants, planting method of ground cover plants, and germination and development trend of seeding plants of the experimental restoration site on abandoned concrete roads are revealing specific trends in the way landscape woody plants establishment and growth. Finally, this study suggests further studies and survey on varied plant restoration methods on abandoned concrete-roads for developed design guidelines of their methods.

A Simple Seismic Vulnerability Sorting Method for Electric Power Utility Tunnels (전력구의 간편 지진취약도 선별법)

  • Kang, Choonghyun;Huh, Jungwon;Park, Inn-Joon;Hwang, Kyeong Min;Jang, Jung Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.110-118
    • /
    • 2018
  • Due to recent earthquakes, there is a growing awareness that Korea is not a safe zone for earthquakes any more. Therefore, the review of various aspects of the seismic safety of the infrastructures are being carried out. Because of the characteristics of the underground structure buried in the ground, the electric power utility tunnels must be considered not only for the inertia and load capacity of the structure itself but also the characteristics of the surrounding soils. An extensive and accurate numerical analysis is inevitably required in order to consider the interaction with the ground, but it is difficult to apply the soil-structure interaction analyses, which generally requires high cost and extensive time, to all electric power utility tunnel structures. In this study, the major design variables including soil characteristics are considered as independent variables, and the seismic safety factor, which is the result of the numerical analysis, is considered as a dependent variable. Thus, a method is proposed to select vulnerable electric power utility tunnels with low seismic safety factor while excluding costly and time-consuming numerical analyses through the direct correlation analysis between independent and dependent variables. Equations of boundary limits were derived based on the distribution of the seismic safety factor and the cover depth and rebar amounts with high correlation relationship. Consequently, a very efficient and simple approach is proposed to select vulnerable electric power utility tunnels without intensive numerical analyses. Among the 108 electric power utility tunnels that were investigated in this paper, 30% were screened as fragile structures, and it is confirmed that the screening method is valid by checking the safety factors of the fragile structure. The approach is relatively very simple to use and easy to expand, and can be conveniently applied to additional data to be obtained in the future.