• Title/Summary/Keyword: Covariance matrix estimation

Search Result 151, Processing Time 0.019 seconds

Validation on Residual Variation and Covariance Matrix of USSTRATCOM Two Line Element

  • Yim, Hyeon-Jeong;Chung, Dae-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • Satellite operating agencies are constantly monitoring conjunctions between satellites and space objects. Two line element (TLE) data, published by the Joint Space Operations Center of the United States Strategic Command, are available as raw data for a preliminary analysis of initial conjunction with a space object without any orbital information. However, there exist several sorts of uncertainties in the TLE data. In this paper, we suggest and analyze a method for estimating the uncertainties in the TLE data through mean, standard deviation of state vector residuals and covariance matrix. Also the estimation results are compared with actual results of orbit determination to validate the estimation method. Characteristics of the state vector residuals depending on the orbital elements are examined by applying the analysis to several satellites in various orbits. Main source of difference between the covariance matrices are also analyzed by comparing the matrices. Particularly, for the Korea Multi-Purpose Satellite-2, we examine the characteristics of the residual variation of state vector and covariance matrix depending on the orbital elements. It is confirmed that a realistic consideration on the space situation of space objects is possible using information from the analysis of mean, standard deviation of the state vector residuals of TLE and covariance matrix.

Effects of Covariance Modeling on Estimation Accuracy in an IMU-based Attitude Estimation Kalman Filter (IMU 기반 자세 추정 칼만필터에서 공분산 모델링이 추정 정확도에 미치는 영향)

  • Choi, Ji Seok;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.440-446
    • /
    • 2020
  • A well-known difficulty in attitude estimation based on inertial measurement unit (IMU) signals is the occurrence of external acceleration under dynamic motion conditions, as the acceleration significantly degrades the estimation accuracy. Lee et al. (2012) designed a Kalman filter (KF) that could effectively deal with the acceleration issue. Ahmed and Tahir (2017) modified this method by adjusting the acceleration-related covariance matrix because they considered covariance modeling as a pivotal factor in the estimation accuracy. This study investigates the effects of covariance modeling on estimation accuracy in an IMU-based attitude estimation KF. The method proposed by Ahmed and Tahir can be divided into two: one uses the covariance including only diagonal components and the other uses the covariance including both diagonal and off-diagonal components. This paper compares these three methods with respect to the motion condition and the window size, which is required for the methods by Ahmed and Tahir. Experimental results showed that the method proposed by Lee et al. performed the best among the three methods under relatively slow motion conditions, whereas the modified method using the diagonal covariance with a high window size performed the best under relatively fast motion conditions.

A Comparative Study of Covariance Matrix Estimators in High-Dimensional Data (고차원 데이터에서 공분산행렬의 추정에 대한 비교연구)

  • Lee, DongHyuk;Lee, Jae Won
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.747-758
    • /
    • 2013
  • The covariance matrix is important in multivariate statistical analysis and a sample covariance matrix is used as an estimator of the covariance matrix. High dimensional data has a larger dimension than the sample size; therefore, the sample covariance matrix may not be suitable since it is known to perform poorly and event not invertible. A number of covariance matrix estimators have been recently proposed with three different approaches of shrinkage, thresholding, and modified Cholesky decomposition. We compare the performance of these newly proposed estimators in various situations.

Wideband adaptive beamforming method using subarrays in acoustic vector sensor linear array (부배열을 이용한 음향벡터센서 선배열의 광대역 적응빔형성기법)

  • Kim, Jeong-Soo;Kim, Chang-Jin;Lee, Young-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.395-402
    • /
    • 2016
  • In this paper, a wideband adaptive beamforming approach for an acoustic vector sensor linear array is presented. It is a very important issue to estimate the stable covariance matrix for adaptive beamforming. In the conventional wideband adaptive beamforming based on coherent signal-subspace (CSS) processing, the error of bearing estimates is resulted from the focusing matrix estimation and the large number of data snapshot is necessary. To alleviate the estimation error and snapshot deficiency in estimating covariance matrix, the steered covariance matrix method in the pressure sensor is extended to the vector sensor array, and the subarray technique is incorporated. By this technique, more accurate azimuth estimates and a stable covariance matrix can be obtained with a small number of data snapshot. Through simulation, the azimuth estimation performance of the proposed beamforming method and a wideband adaptive beamforming based on CSS processing are assessed.

Modified Multivariate $T^2$-Chart based on Robust Estimation (로버스트 추정에 근거한 수정된 다변량 $T^2$- 관리도)

  • 성웅현;박동련
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • We consider the problem of detecting special variations in multivariate $T^2$-control chart when two or more multivariate outliers are present. Since a multivariate outlier may reflect slippage in mean, variance, or correlation, it can distort the sample mean vector and sample covariance matrix. Damaged sample mean vector and sample covariance matrix have difficulty in examining special variations clearly, An alternative to detection outliers or special variations is to use robust estimators of mean vector and covariance matrix that are less sensitive to extreme observations than are the standard estimators $\bar{x}$ and $\textbf{S}$. We applied popular minimum volume ellipsoid(MVE) and minimum covariance determinant(MCD) method to estimate mean vector and covariance matrix and compared its results with standard $T^2$-control chart using simulated multivariate data with outliers. We found that the modified $T^2$-control chart based on the above robust methods were more effective in detecting special variations clearly than the standard $T^2$-control chart.

  • PDF

Dynamic linear mixed models with ARMA covariance matrix

  • Han, Eun-Jeong;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.575-585
    • /
    • 2016
  • Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (between-subject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods.

A Novel Covariance Matrix Estimation Method for MVDR Beamforming In Audio-Visual Communication Systems (오디오-비디오 통신 시스템에서 MVDR 빔 형성 기법을 위한 새로운 공분산 행렬 예측 방법)

  • You, Gyeong-Kuk;Yang, Jae-Mo;Lee, Jinkyu;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.326-334
    • /
    • 2014
  • This paper proposes a novel covariance matrix estimation scheme for minimum variance distortionless response (MVDR) beamforming. By accurately tracking direction-of-sound source arrival (DoA) information using audio-visual sensors, the covariance matrix is efficiently estimated by adopting a variable forgetting factor. The variable forgetting factor is determined by considering signal-to-interference ratio (SIR). Experimental results verify that the performance of the proposed method is superior to that of the conventional one in terms of interference/noise reduction and speech distortion.

Study on Space-Time Adaptive Processing Based on Novel Clutter Covariance Matrix Estimation Using Median Value (중위수를 이용한 새로운 간섭 공분산 행렬의 예측이 적용된 Space-Time Adaptive Processing에 대한 연구)

  • Kang, Sung-Yong;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2010
  • In this paper, we presented a signal model of STAP and actual environment of clutter. The novel estimation method of clutter covariance matrix using median value is proposed to overcome serious performance degradation after NHD in nonhomogeneous clutter. Eigen value characteristic is improved through diagonal loading. Target detection ability and SINR loss of the proposed method though MSMI statistic is also compared with conventional method using average value. The simulation results, confirm the proposed method has better performance than others.

Performance of covariance matrix fitting-based direction-of-arrival estimation algorithm using compressed sensing in the frequency domain (주파수 영역에서 공분산 행렬 fitting 기반 압축센싱 도래각 추정 알고리즘의 성능)

  • Zhang, Xueyang;Paik, Ji Woong;Hong, Wooyoung;Ahn, Jae-Kyun;Kim, Seongil;Lee, Joon-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.394-400
    • /
    • 2017
  • This paper shows the extension of SpSF (Sparse Spectrum Fitting) algorithm, which is one of covariance matrix fitting-based DOA (Direction-of-Arrival) estimation algorithms, from the time domain to the frequency domain, and presents that SpSF can be implemented in the frequency domain. The superiority of the SpSF algorithm has been demonstrated by comparing DOA estimation performance with the performance of Conventional DOA estimation algorithm in the frequency domain for sinusoidal incident signals.

A new mthod for high resolution DOA systems (고해상도 DOA 시스템을 위한 새로운 방법 제안)

  • 고학임;문대철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.340-346
    • /
    • 1996
  • In this paper, we propose a ne weighted backward covariance matrix method to enhance the resolution for direction-of-arrival(DOA) estimation. The proposed method (MEVM:modified eigenvector method) is an enhanced covariance matrix method which is an extended form of the conventional covariance matrix. We analyze the effect of using the weighted forward-baskward covariance matrix on the performance of the eigenvector method(EVM). By comparing the perturbation angle of the noise-subspace, we show that the spectral estimate obtained using the proposed method is less distorted than the spectral estimate obtained using the conventional EVM. The simulation results show that the new method is more accurate and has better resolution than the conventional EVM under the same noise conditions.

  • PDF