• Title/Summary/Keyword: Coupling reactions

검색결과 148건 처리시간 0.022초

Comparison between Ionospheric and plasmaspheric TECs measured from JASON satellite: plasmaspheric flux

  • Lee, Han-Byul;Jee, Geon-Hwa;Kim, Yong-Ha;Chung, Jong-Kyun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.27.3-27.3
    • /
    • 2011
  • The plasmasphere is filled with the ions and electron transported mostly from the mid-latitude ionosphere. In the topside ionosphere where the $O^+$ ions are still major ions, the $O^+$ ions are in chemical equilibrium with the $H^+$ ions and exchange their charges with each other's parent atoms with similar rates in both reactions. During the day, the newly produced $H^+$ ions flow upward to fill the plasmasphere while they flow downward and contribute to the maintenance of the ionospheric density at night under the geomagnetically quiet condition. The ionosphere and plasmasphere are coupled by these plasma fluxes and therefore strongly affect each other. In order to study these coupling we utilized the plasma density measurements from JASON satellite. This satellite measures vertical total electron content (TEC) from the ground to the satellite orbit (about 1336 km) and slant TEC from the satellite orbit to much higher GPS satellites by using the on-board dual-frequency altimeter and GPS receiver, respectively. The former measurement can represent the ionospheric TEC while the latter can represent the plasmaspheric TEC in the equatorial region. We compared these data with different seasons, solar activities and local times, and the results will be presented.

  • PDF

Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds

  • Hong, Jang-Hwan
    • 통합자연과학논문집
    • /
    • 제10권4호
    • /
    • pp.175-191
    • /
    • 2017
  • In organic chemistry amide synthesis is performed through condensation of a carboxylic acid and an amine with releasing one equivalent of water via the corresponding ammonium carboxylate salt. This method is suffering from tedious processes and poor atom-economy due to the adverse thermodynamics of the equilibrium and the high activation barrier for direct coupling of a carboxylic acid and an amine. Most of the chemical approaches to amides formations have been therefore being developed, they are mainly focused on secondary amides. Direct carbonylations of tertiary amines to amides have been an exotic field unresolved, in particular direct carbonylation of trimethylamine in lack of commercial need has been attracted much interests due to the versatile product of N,N-dimethylacetamide in chemical industries and the activation of robust N-C($sp^3$) bond in tertiary amine academically. This review is focused mainly on carbonylation of trimethylamine as one of the typical tertiary amines by transition metals of cobalt, rhodium, platinum, and palladium including the role of methyl iodide as a promoter, the intermediate formation of acyl iodide, the coordination ability of trimethylamine to transition metal catalysts, and any possibility of CO insertion into the bond of Me-N in trimethylamine. In addition reactions of acyl halides as an activated form of acetic acid with amines are reviewed in brief since acyl iodide is suggested as a critical intermediate in those carbonylations of trimethylamine.

Preparation of Novel Fused Ring Spiro[benzotetraphene-fluorene] Derivatives and Application for Deep-Blue Host Materials

  • Kim, Min-Ji;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1639-1646
    • /
    • 2014
  • A series of novel fused-ring spiro compounds, spiro[benzo[ij]tetraphene-7,9'-fluorene] (SBTF) derivatives containing an end-capping aryl substituent at both the C3 and C10-positions hasbeen designed and synthesized via multi-step Suzuki coupling reactions. 3-(1-Naphthyl)-10-phenylSBTF (1N-PSBTF), 3-(2-naphthyl)-10-phenylSBTF (2N-PSBTF) and 3-[4-(1-naphthyl)phenyl]-10-phenylSBTF (NP-PSBTF) showed improved glass transition temperatures ($T_g$) with good thermal stability. Their photophysical, electrochemical, and electroluminescent properties were investigated and were used to construct blue organic light emission diodes (OLEDs). The typical OLED devices showed excellent performance; the NP-PSBTF-based device exhibited highly efficient deep blue-light emission with a maximum efficiency of 5.27 cd/A (EQE, 4.63%) with CIE (x = 0.133, y = 0.144). According to these characteristics, these deep-blue light emitting materials have sufficient potential for fluorescent OLED applications.

Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE2 Production

  • Kim, Sung Soo;Vo, Van Anh;Park, Haeil
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3219-3223
    • /
    • 2014
  • Ochnaflavone, a naturally occurring biflavonoid composed of two units of apigenin (5,7,4'-trihydroxyflavone) joined via a C-O-C linkage, was first synthesized and evaluated its inhibitory activity on $PGE_2$ production. Total synthesis was accomplished through modified Ullmann diaryl ether formation as a key step. Coupling reactions of 4'-halogenoflavones and 3'-hydroxy-5,7,4'-trimethoxyflavone were explored in diverse reaction conditions. The reaction of 4'-fluoro-5,7-dimethoxyflavone (2c) and 3'-hydroxy-5,7,4'-trimethoxyflavone (2d) in N,N-dimethylacetamide gave the coupled compound 3 in 58% yield. Synthetic ochnaflavone strongly inhibited PGE2 production ($IC_{50}=1.08{\mu}M$) from LPS-activated RAW 264.7 cells, which was due to reduced expression of COX-2. On the contrary, the inhibition mechanism of wogonin was somewhat different from that of ochnaflavone although wogonin, a natural occurring anti-inflammatory flavonoid, showed strong inhibitory activity of $PGE_2$ production ($IC_{50}=0.52{\mu}M$), and seems to be COX-2 enzyme inhibition. Our concise total synthesis of ochnaflavone enable us to provide sufficient quantities of material for advanced biological studies as well as to efficiently prepare derivatives for structure-activity relationship study.

Tetraethylorthosilicate를 사용한 수분산 폴리우레탄/실리카 Nanocomposite의 제조 (Preparation of Waterborne Polyurethane/Silica Nanocomposites Using Tetraethylorthosilicate)

  • 신용탁;홍민기;최진주;이원기;이경배;유병원;이명구;송기창
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.428-433
    • /
    • 2010
  • Isophorone diisocyanate(IPDI), poly(tetramethylene glycol)(PTMG), dimethylol propionic acid(DMPA), triethylamine(TEA), ethylenediamine(EDA), 3-aminopropyl triethoxysilane(APS)을 출발물질로 하여 수분산 폴리우레탄(Waterborne polyurethane, WPU)이 합성되었다. 이 WPU에 0~8 wt%로 첨가량이 조절된 tetraethylorthosilicate(TEOS)를 첨가한 후 Sol-Gel 반응을 진행시켜 WPU/silica nanocomposite를 제조하였다. WPU/silica nanocomposite의 평균 입경은 TEOS의 첨가량이 증가함에 따라 증가하였다. 또한 제조된 nanocomposite의 열적 안정성은 순수한 WPU보다 우수하였다.

아실 시아노포스포레인과 아민 유도체로 부터 γ-아미노부틸산에서 유도된 포스포리파제 A2 저해제의 효과적인 합성 (An Efficient Synthesis of γ-Aminobutyric Acid-Derived Phospholipase A2 Inhibitors from Acyl Cyanophosphoranes and Amine Derivatives)

  • 이기승;김대근
    • 대한화학회지
    • /
    • 제48권2호
    • /
    • pp.161-170
    • /
    • 2004
  • 일련의 유효한 ${\gamma}$-아미노부틸산에서 유도된 인간 시토솔릭 포스포리파제 A$_2$ 저해제를 아실 시아노포스포레인과 아민 유도체로 부터 수렴적으로 합성하였다. 저해제 내의 친전자적인 단편인 알파-케토 아미드 작용기는 불안정한 ${\alpha},{\beta}$-디케토 니트릴과 ${\gamma}$-아미노부틸산 삼차-부틸에스테르 유도체와의 직접 융합반응에 의하여 -78 $^{\circ}C$에서 양호한 수율로 합성하였다.

3-아미노-1H-피라졸-4-카르복실산 에틸의 디아조화와 결합반응;피라졸로아진의 합성 (Diazotization and Coupling Reactions of Ethyl 3-amino-1H-pyrazole-4-carboxylate;Synthesis of some Pyrazolozaines)

  • Youssef, Ayman M.S.;Faty, Rasha A.M.;Youssef, Mohamed M.
    • 대한화학회지
    • /
    • 제45권5호
    • /
    • pp.448-453
    • /
    • 2001
  • 피라졸로아진은 농업이나 의약품에서 매우 유용한 화합물등이다. 본 논문에서는 몇 가지 새로운 피라졸로아진의 합성을 보고하고자 한다. 표제 화합물인 3-아미노-1H-피라졸-4-카복실산 에틸을 다이아조화한 후 활성화된 메틸렌 화합물들과 반응시키고 고리화하여 피라졸로[5,1-c][1,2,4]트라이아진 유도체들을 합성하였다. 또한 표제 화합물을 $\alpha$-치환된 신남나이트릴과 반응시켜 피라졸로[1,5-a]피리미딘 유도체들을 합성하였다. 새로 합성된 화합물들의 구조는 화학적 방법과 분광학적 방법을 사용하여 확립하였다.

  • PDF

제초제 검출을 위한 전기화학적 일회용 면역센서 (Disposable Electrochemical Immunosensors for the Detection of Herbicide)

  • 장승철
    • 센서학회지
    • /
    • 제20권1호
    • /
    • pp.35-39
    • /
    • 2011
  • A disposable electrochemical immunosensor system has been developed for the detection of herbicide in aqueous samples. Disposable screen printed carbon electrodes(SPCE) were used as basic electrodes and an enzyme, horseradish peroxidase (HRP), and anti-herbicide antibodies was immobilised on to the working electrode of SPCE by using avidin-biotin coupling reactions. An herbicide-glucose oxidase conjugates have been used for the competitive immunoreaction with sample herbicides. The enzymatic reaction between the conjugated glucose oxidase and glucose added generates hydrogen peroxide, which was reduced by the peroxidase immobilised. The latter process caused an electrical current change, due to direct re-reduction of peroxidase by a direct electron transfer mechanism, which was measured to determine the herbicides in the sample. The optimal operational condition was found to be: $20\;{\mu}gl-1$ deglycosylated avidin loading to the working electrode and working potential +50 mV vs. Ag/AgCl. The total assay time was 15 min after sample addition. The detection limits for herbicides, atrazine and simazine, were found to be 3 ppb and 10 ppb, respectively.

Submicrospheres as Both a Template and the Catalyst Source. Silica Submicro-reactor Dotted with Palladium Nanoparticles as Catalysts

  • Kim, Sung Min;Noh, Tae Hwan;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1127-1130
    • /
    • 2013
  • Formation of the monodisperse submicrospheres consisting of ionic palladium(II) complexes, $[(Me_4en)Pd(L)]_2(X)_4$($Me_4en$ = N,N,N',N'-tetramethylethylenediamine; L = bis(4-(4-pyridylcarboxyl)phenyl)methane; $X^-=BF_4{^-}$ and $ClO_4{^-}$), has been carried out without any templates or additives. The submicrospheres were coated with silicates, and then calcined in air at $550^{\circ}C$ for 1 h, to efficiently form hollow-spherical $SiO_2$ submicro-reactors dotted with palladium(0) nanoparticles (PdNPs). That is, the submicrospheres act as both a template and a source of the palladium metal nanoparticles. The submicro-reactors containing nano-catalysts have been characterized by means of SEM, TEM, and XPS. Notably, the reactors were proved to be very effective for Suzuki-Miyaura cross-coupling and hydrogenation reactions.

Synthesis and Characterization of Sulfonated Poly(arylene ether) Polyimide Multiblock Copolymers for Proton Exchange Membranes

  • Lee, Hae-Seung;Roy Abhishek;Badami Anand S.;McGrath James E.
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.160-166
    • /
    • 2007
  • Novel multiblock copolymers, based on segmented sulfonated hydrophilic-hydrophobic blocks, were synthesized and investigated for their application as proton exchange membranes. A series of segmented sulfonated poly(arylene ether sulfone)-b-polyimide multiblock copolymers, with various block lengths, were synthesized via the coupling reaction between the terminal amine moieties on the hydrophilic blocks and naphthalene anhydride functionalized hydrophobic blocks. Successful imidization reactions required a mixed solvent system, comprised of NMP and m-cresol, in the presence of catalysts. Proton conductivity measurements revealed that the proton conductivity improved with increasing hydrophilic and hydrophobic block lengths. The morphological structure of the multiblock copolymers was investigated using tapping mode atomic force microscopy (TM-AFM). The AFM images of the copolymers demonstrated well-defined nanophase separated morphologies, with the changes in the block length having a pronounced effect on the phase separated morphologies of the system. The self diffusion coefficient of water, as measured by $^1H$ NMR, provided a better understanding of the transport process. Thus, the block copolymers showed higher values than Nafion, and comparable proton conductivities in liquid water, as well as under partially hydrated conditions at $80^{\circ}C$. The new materials are strong candidates for use in PEM systems.