• Title/Summary/Keyword: Coupling efficiency

Search Result 652, Processing Time 0.034 seconds

Differences in Design Considerations between InGaN and Conventional High-Brightness Light-Emitting Diodes

  • Lee, Song-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • Based on the escape cone concepts, high-brightness light-emitting diodes (LEDs) have been analyzed. In AlGaAs or InGaAlP LEDs, photon absorption in the ohmic region under the electrode is known to be significant. Thus, ins general, a thick window layer (WL) and a transparent substrate (TS) would minimize photon shielding by the electrodes and considerably improve photon output coupling efficiency. However, the schemes do not seem to be necessary in InGaN system. Photon absorption in ohmic contact to a wide bandgap semiconductor such as GaN may be negligible and, as a result, the significant photon shielding by the electrodes will not degrade the photon output coupling efficiency so much. The photon output coupling efficiency estimated in InGaN LEDs is about 2.5 - 2.8 times that of the conventional high-brightness LED structures based on both WL and TS schemes. As a result, the extenal quantum efficiency in InGaN LEDs is as high as 9% despite the presumably very low internal quantum efficiency.

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.

An Experimental Study on Torque Characteristics and Efficiency of Hydraulic Couplings (유체커플링의 토오크 특성과 효율에 관한 실험적 연구)

  • 박용호;염만오
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.46-55
    • /
    • 1994
  • The purpose of this research is to construct experimental test set-up and to establish a series of performance test program for the domestically developed hydraulic couplings, and to provide a software to store and utilize these experimental data which can be used to improve the performance of the hydraulic coupling and solve the job problems confronted during operation. The performance test consists of measurement of torque, rpm and efficiency of the hydraulic coupling for three different amounts of working fluid with various loads to the output shaft, and investigating the torque, rpm and efficiency characteristics with respect to these parameters. The results of this study can contribute to the development of variable speed hydraulic coupling and torque converter pursued by the domestic industry.

  • PDF

An Experimental Study on Power Transmission Characteristics Flow Rate in Fluid Couplings (유체커플링에서 유량과 동력전달특성에 관한 실험적 연구)

  • Pak, Yong-Ho;Moon, Dong-Cheol;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.27-35
    • /
    • 1995
  • The fluid coupling combined with a pump and a turbine have many merits compared with other couplings, their uses are increesing rapidly in various industrial fields at home and abroad in pursuit of high-speed more efficiency durability of various mechanic devices. The authorities concerned have recognized the improtance of the fluid coupling and supported its developement and now some trial products began to show up. As the structrue and characteristics of the fluid coupling have little similarity to other kinds of couplings and its fluid behavior is unique, so its characteristic analysis is expected to be difficult. Until now no satisfactory study on the characteristics of the fluid coupling seems to have been conducted at home, so a study on this field needs to be done urgently. The purpose of this research is to construct the experimental test set-ups and establish a series of performance test program for the domestically developed fluid couplings and to provide a software to store and utilize these experimental data which can be used to improve the performance of the fluid coupling and solve on the job problems confronted in operation. The performance test consists of taking measurment of torque, rpm and efficiency of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft and finally infestigating the torque, rpm and efficiency characteristics of the fluid coupling with respect to these parameters. The results of this study can contribute valuable references to the development of variable speed fluid coupling and torque converter currently pursued by the domestic industry.

  • PDF

Alternative Expressions for Mutual Inductance and Coupling Coefficient Applied in Wireless Power Transfer

  • Kim, Gunyoung;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.112-118
    • /
    • 2016
  • Alternative analytic expressions for the mutual inductance ($L_m$) and coupling coefficient (k) between circular loops are presented using more familiar and convenient expressions that represent the property of reciprocity clearly. In particular, the coupling coefficients are expressed in terms of structural dimensions normalized to a geometric mean of radii of two loops. Based on the presented expressions, various aspects of the mutual inductances and coupling coefficients, including the regions of positive, zero, and negative value, are examined with respect to their impacts on the efficiency of wireless power transmission.

Performance Analysis of Contactless Electrical Power Transfer for Maglev

  • Hasanzadeh, S.;Vaez-Zadeh, S.
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2012
  • Contactless electrical power transfer through an air gap is a revived technology for supplying energy to many movable applications including Maglev. In this paper, magnetic equivalent circuits and analytical models of contactless electrical power transfer systems are developed and evaluated through experiment. Overall coupling coefficient and overall efficiency are introduced as means for evaluating the systems' performance. Compensating capacitors in primary and secondary sides of the systems improve the overall coupling coefficient and overall efficiency. Using the analytical models, the effects of different parameters and variables such as air gap and load current are analyzed to give a high coupling coefficient and an improved efficiency of power transfer for different compensation structures.

The characteristics and optimal modeling of input source for optical device using thin film filter in optical telecommunication network (광통신용 박막필터형 광소자 분석을 위한 최적화 모델링과 특성분석)

  • 김명진;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.306-311
    • /
    • 2003
  • In this paper, we modeled the incident beam in order to analyze and evaluate the optical thin film device for wavelength division multiplexing in optical telecommunication network. As applied ray tracing method to the optical path, we were compared the accuracy of coupling efficiency simulated by two modeling methods. In the results of sinulation, ceil modeling method was preferred to annual modeling method in micro-optic device because of accuracy for coupling efficiency and Gaussian intensity distribution. In the results of optimal simulation for optical device using thin film filter, the distance (d1) between optical fiber and GRIN lens, the distance (d2) between GRIN lens and thin film filter and the coupling efficiency were 0.24 mm, 0.25 mm and -0.11 ㏈ respectively. As d2 was displaced at 0.25 mm and d1 was varied in order to evaluate the optimal value, d1 and maximum coupling efficiency were 0.24 mm and -0.35㏈, respectively. Then the results of experiment were corresponded to that of optimal simulation by cell modeling and it was possible to analyze the performance for optical device using thin film filter by the simulation.

Research on Fabrication of Silicon Lens for Optical Communication by Photolithography Process (포토리소그래피를 통한 광통신용 실리콘 렌즈 제작 및 특성 연구)

  • Park, Junseong;Lee, Daejang;Rho, Hokyun;Kim, Sunggeun;Heo, Jaeyeong;Ryu, Sangwan;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.35-39
    • /
    • 2018
  • In order to improve the coupling efficiency, a collimator lens that collects the light emitted from the laser diode at a wide angle to the core of the optical fiber is essential. Glass mold method using a mold is widely used as a collimator lens currently used. Although this method is inexpensive to produce, it is difficult to form precisely and quality problems such as spherical aberration. In this study, the precision of surface processing was improved by replacing the existing glass mold method with the semiconductor process, and the material of the lens was changed to silicon suitable for the semiconductor process. The semiconductor process consists of a photolithography process using PR and a dry etching process using plasma. The optical coupling efficiency was measured using an ultra-precision alignment system for the evaluation of the optical characteristics of the silicon lens. As a result, the optical coupling efficiency was 50% when the lens diameter was $220{\mu}m$, and the optical coupling property was 5% or less with respect to the maximum optical coupling efficiency in the lens diameter range of $210-240{\mu}m$.

A Study on Transmission Efficiency of Wireless Power Induction and Resonant Charging Methodologies (무선 유도 및 공진 충전방식의 전송효율 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.747-750
    • /
    • 2019
  • Wearable devices have become practically indispensable to daily life and helped people track and manage fitness, health, and medical functions etc. As these wearable devices become smaller and more comfortable for the user, the demand for longer run time and charging ways presents new challenges for the power management engineer. Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smart phone to high power electric railroad and main electrical grid. There are two kinds of WPT methods: Inductive coupling and magnetic resonant coupling. The model using magnetic resonant coupling method is designed for a resonant frequency of 13.45 MHz. In this study, the hardware implementations of these two coupling methods are carried out, and the efficiencies are compared.

Omnidirectional Resonator in X-Y Plane Using a Crisscross Structure for Wireless Power Transfer

  • Kim, Donggeon;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Magnetic resonant coupling is more efficient than inductive coupling for transferring power wirelessly over a distance. However, a conventional resonant wireless power transfer (WPT) system requires a transmitter and receiver pair in exactly coaxial positions. We propose a resonator that can serve as an omnidirectional WPT system. A magnetic field will be generated by the current flowed through the transmitter. This magnetic field radiates omnidirectionally in the x-y plane because of the crisscross structure characteristic of the transmitter. The proposed resonator is demonstrated by using a single port. To check the received S21 and transfer efficiency, we moved the receiver around the transmitter at different distances (50-350 mm). As a result, the transmission efficiency is found to be 48%-54% at 200 mm.