• Title/Summary/Keyword: Coupling Conditions

Search Result 658, Processing Time 0.023 seconds

Pretest analysis of a prestressed concrete containment 1:3.2 scale model under thermal-pressure coupling conditions

  • Qingyu Yang;Jiachuan Yan;Feng Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2069-2087
    • /
    • 2023
  • In nuclear power plant (NPP) accidents, the containment is subject to high temperatures and high internal pressures, which may further trigger serious chain accidents such as core meltdown and hydrogen explosion, resulting in a significantly higher accident level. Therefore, studying the mechanical performance of a containment under high temperature and high internal pressure is relevant to the safety of NPPs. Based on similarity principles, the 1:3.2 scale model of a prestressed concrete containment vessel (PCCV) of a NPP was designed. The loading method, which considers the thermal-pressure coupling conditions, was used. The mechanical response of the PCCV was investigated with a simultaneous increase in internal pressure and temperature, and the failure mechanism of the PCCV under thermal-pressure coupling conditions was revealed.

Dynamic Analysis of Spindle System with Magnetic Coupling(ll) (마그네틱 커플링을 장착한 축계의 동적해석(II))

  • Kim, S.G.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.107-113
    • /
    • 1995
  • Using the mathematical model of the torsional vibration in spindle system with magnetic coupling, which was proposed in the paper of dynamic analysis of spindle system with magnetic coupling(l), we derive the equations of the motion and the form of the derived equations represents Duffing equation. Numerical analyses are executed in many conditions, namely the various types in magnetic coupling, changes of the gap between driver and follower. To verify the results of the therorectical analyses, a precision dynamic drive system is manufactured and methods of the test to measure the torsional vibration of the spindle system with magnetic coupling are presented ad thests in various conditions are carried out.

  • PDF

Comparison of Electrodeposited Carbon Fibers Reinforce Epoxy Composites Using Monomeric and Polymeric Coupling Agents

  • Park, Joung-Man;Kim, Yeong-Min
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2000
  • By electrodeposition (ED) using a monomeric- and two polymeric coupling agents, the interfacial shear strength (IFSS) of carbon fiber/epoxy composites was investigated by fragmentation test. ED results were compared with the dipping and the untreated cases under dry and wet conditions. Multi-fiber composites (MFC) were used for the direct comparison for the untreated and the treated cases. Various treating conditions including time, concentration and temperature were evaluated, respectively. Under dry and wet conditions ED treatment exhibited much higher IFSS improvement compared to the dipping and the untreated cases. Monomeric- and polymeric coupling agents exhibited the comparative IFSS improvement. Adsorption mechanism between coupling agents and carbon fiber was analyzed in terms of the electrolyte molecular interactions during ED process based on to the chain mobility. The microfailure modes occurring from the fiber break, matrix and interlayer cracks were correlated to IFSS.

  • PDF

Analysis of ion-exchanged waveguides by using Prism-Coupling method (Prism-Coupling 방법에 의한 이온교환 도파로 해석)

  • 박정일;박태성;이현용;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.37-39
    • /
    • 1994
  • We have investigated the characteristics of planar optical waveguides formed by silver ion-exchange. Experimental values of the effective indices of guided modes were obtained by measuring the synchronous angles of strongest coupling. Definition of an effective diffusion constant leads to the mode-dispersion curves applicable over a wide range of fabrication conditions. In order to compare experimental and theoretical results, We have plotted each mode index of a wide range of fabrication conditions.

Study on Reliability Evaluation for a Taper Grid Coupling (테이퍼 그리드 커플링의 신뢰성 평가에 관한 연구)

  • Jung, Dong Soo
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.343-354
    • /
    • 2017
  • Purpose: This paper evaluates the reliability of tapered grid couplings and presents test results through performance and life tests. Methods: The performance and life test method were presented by analyzing the failure modes for the tapered grid coupling. Zero failure test time was calculated to evaluate the reliability of tapered grid couplings and the test was performed under accelerated conditions. The nondestructive test and wear analysis using weighing were also carried out to check the failure modes of the field conditions. Conclusion: This study can be provided to improve the product reliability through failure analysis of a tapered grid coupling. The performance test results of before and after the accelerated life test were presented to confirm the improved reliability of the tapered grid coupling.

Analysis of the fluid-solid-thermal coupling of a pressurizer surge line under ocean conditions

  • Yu, Hang;Zhao, Xinwen;Fu, Shengwei;Zhu, Kang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3732-3744
    • /
    • 2022
  • To investigate the effects of ocean conditions on the thermal stress and deformation caused by thermal stratification of a pressurizer surge line in a floating nuclear power plant (FNPP), the finite element simulation platform ANSYS Workbench is utilized to conduct the fluid-solid-thermal coupling transient analysis of the surge line under normal "wave-out" condition (no motion) and under ocean conditions (rolling and pitching), generating the transient response characteristics of temperature distribution, thermal stress and thermal deformation inside the surge line. By comparing the calculated results for the three motion conditions, it is found that ocean conditions can significantly improve the thermal stratification phenomenon within the surge line, but may also result in periodic oscillations in the temperature, thermal stress, and thermal deformation of the surge line. Parts of the surge line that are more susceptible to thermal fatigue damage or failure are determined. According to calculation results, the improvements are recommended for pipeline structure to reduce the effects of thermal oscillation caused by ocean conditions. The analysis method used in this study is beneficial for designing and optimizing the pipeline structure of a floating nuclear power plant, as well as for increasing its safety.

A HOPF BIFURCATION IN AN ATTRACTION-ATTRACTION CHEMOTAXIS SYSTEM WITH GLOBAL COUPLING

  • YoonMee Ham
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • We consider a bistable attraction-attraction chemotaxis system with global coupling term. The study in this paper asserts that conditions for chemotactic coefficients for attraction and attraction and the global coupling constant to show existence of stationary solutions and Hopf bifurcation in the interfacial problem as the bifurcation parameters vary are obtained analytically.

Novel Optical Coupling Filters using Leaky Characteristics of Metal-Strip Gratings (금속격지구조의 누설특성을 이용한 새로운 광 결합용 필터)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.190-195
    • /
    • 2007
  • A novel optical coupling filter with finite-thickness metal-strip gratings printed on optical planar dielectric slabs is proposed, and Bragg conditions of the device are rigorously evaluated by using Modal Transmission-Line Theory (MTLT). The numerical results reveal that the guiding structures have filtering properties due to a leaky-wave stop-band while conventional DFB guiding structures consisted of dielectric gratings depend on a feedback-wave stop-band. Consequently, it shows that the optical coupling titter dependent on the leaky-wave filtering characteristics can be compounded of such optical devices as LD and optical fiber.

Synthesis of Neopentyl Biphenylsulfonates Using the Suzuki-Miyaura Reaction

  • Cho, Chul-Hee;Kim, Chul-Bae;Sun, Myung-Chul;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1632-1636
    • /
    • 2003
  • Palladium-catalyzed cross-coupling reactions of neopentyloxysulfonylphenyl bromides with arylboronic acids provided a variety of neopentyl biphenylsulfonates in good yields. 2-Bromo- and 4-bromobenzenesulfonates underwent the coupling reaction more rapidly than 3-bromobenzenesulfonate, while chlorobenzenesulfonate did not produce the coupling product under the standard reaction conditions.

Experimental study on seepage characteristics of large size rock specimens under three-dimensional stress

  • Sun, Wenbin;Xue, Yanchao;Yin, Liming;Zhang, Junming
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.567-574
    • /
    • 2019
  • In order to study the effect of stress and water pressure on the permeability of fractured rock mass under three-dimensional stress conditions, a single fracture triaxial stress-seepage coupling model was established; By using the stress-seepage coupling true triaxial test system, large-scale rock specimens were taken as the research object to carry out the coupling test of stress and seepage, the fitting formula of permeability coefficient was obtained. The influence of three-dimensional stress and water pressure on the permeability coefficient of fractured rock mass was discussed. The results show that the three-dimensional stress and water pressure have a significant effect on the fracture permeability coefficient, showing a negative exponential relationship. Under certain water pressure conditions, the permeability coefficient decreases with the increase of the three-dimensional stress, and the normal principal stress plays a dominant role in the permeability. Under certain stress conditions, the permeability coefficient increases when the water pressure increases. Further analysis shows that when the gob floor rock mass is changed from high stress to unloading state, the seepage characteristics of the cracked channels will be evidently strengthened.