• Title/Summary/Keyword: Coupling Analysis

Search Result 2,266, Processing Time 0.024 seconds

Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea (위성 토양수분 데이터 및 COSMIC-ray 데이터 보정/검증을 위한 성균관대학교 내 FDR 센서 토양수분 측정 연구(SM-FC) 및 데이터 분석)

  • Kim, Hyunglok;Sunwoo, Wooyeon;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.133-144
    • /
    • 2016
  • In this study, Frequency Domain Reflectometry (FDR) and COSMIC-ray soil moisture (SM) stations were installed at Sungkyunkwan University in Suwon, South Korea. To provide reliable information about SM, soil property test, time series analysis of measured soil moisture, and comparison of measured SM with satellite-based SM product are conducted. In 2014, six FDR stations were set up for obtaining SM. Each of the stations had four FDR sensors with soil depth from 5 cm to 40 cm at 5~10 cm different intervals. The result showed that study region had heterogeneous soil layer properties such as sand and loamy sand. The measured SM data showed strong coupling with precipitation. Furthermore, they had a high correlation coefficient and a low root mean square deviation (RMSD) as compared to the satellite-based SM products. After verifying the accuracy of the data in 2014, four FDR stations and one COSMIC-ray station were additionally installed to establish the Soil Moisture site with FDR and COSMIC-ray, called SM-FC. COSMIC-ray-based SM had a high correlation coefficient of 0.95 compared with mean SM of FDR stations. From these results, the SM-FC will give a valuable insight for researchers into investigate satellite- and model-based SM validation study in South Korea.

Analysis of Magnetic Isotropy Property using Magnetoresistance Curve of CoFe/Cu/CoFe/PtMn Multilayer Film (CoFe/Cu/CoFe/PtMn 다층박막의 자기저항 곡선을 이용한 자기 등방성 특성 분석)

  • Choi, Jong-Gu;Kim, Su-Hee;Choi, Sang-Heon;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.123-128
    • /
    • 2017
  • The magnetic isotropy property from the magnetoresistance (MR) curve and magnetization (MH) loop for the PtMn based spin valve (SV) multilayer films fabricated with different the bottom structure after post-annealing treatment was investigated. The exchange biased coupling field ($H_{ex}$), coercivity ($H_c$), and MR ratio of Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/Ta(4 nm) SV multilayer film without antiferromagnetic PtMn layer are 0 Oe, 25 Oe, and 3.3 %, respectively. MR curve for the Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/Ta(4 nm) SV multilayer film showed $H_{ex}=2Oe$, $H_c=316Oe$, and MR (%) = 4.4 % with one butterfly MR curve having by the effect of antiferromagnetic PtMn layer. MR curve for the dualtype Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/CoFe(3 nm)/Cu(2.5 nm)/CoFe(6 nm)/Ta(4 nm) SV multilayer film showed $H_c=37.5Oe$ and 386 Oe, MR = 3.5 % and 6.5 % with two butterfly MR curves and square-like hysteresis MH loops. The anisotropy property in CoFe spin valve-PtMn multilayer is neglected by the effects of a very small value of $H_{ex}$ and a very slightly shape magnetic anisotropy. This result is possible to explain the effect of magnetization configuration spin array of the bottom SV film and the top SV film of PtMn layer.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

HYDROLYTIC DEGRADATION OF POSTERIOR RESIN RESTORATIVE MATERIALS (구치부 레진 수복 재료의 가수분해)

  • Yang, Kuy-Ho;Park, Mi-Ran;Choi, Nam-Ki;Park, Eun-Hae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.673-682
    • /
    • 2001
  • The use of resin composites has continued to increase over the last several years. In spite of their growing popularity, composites continue to exhibit a number of undesirable characteristics. One of the major deficiencies of composite restorative resins is their inadequate resistance to wear. Of the multitude of factors that have been associated with wear, subsurface degradation within the restoration is considered to be one. The aim of this study was to evaluate the resistance to degradation of four commercial composite resins in an alkaline solution. This solution with a high concentration of hydroxyl ions is a convenient medium for accelerated degradation of silane coupling and filler particles. The brands studies were Definite($Degussa-H\ddot{u}ls$ AG, Germany), Prodigy(Kerr, USA), Pyramid(Bisco, USA) and Synergy(Coltene, Swiss). Preweighed discs of each brand were exposed to 0.1N NaOH solution at $60^{\circ}C$. After 14 days they were removed, neutralized with HCl, washed with water and dried. Resistance to degradation was evaluated on the basis of following parameters : (a) mass loss(%)-determined from pre-and post-exposed specimen weights : (b) Si loss(ppm)-obtained from ICP-AE analysis of solution exposed to specimens; and (c) degradation $depth({\mu}m)$-measured microscopically (SEM) from polished circular sections of exposed specimens. The results were follows: 1. Mass loss of Synergy was $1.24{\pm}0.002%$, it was the highest, there was no significant difference among the materials. 2. The degree of degradation layer depth of Synergy was $107.83{\pm}2.52{\mu}m$, it was the highest, there was no significant difference among any other materials than Synergy. 3. There was no difference among the four materials in Si loss. 4. The correlation coefficient between mass loss and degradation depth was relatively high(r=0.06, p<0.05). 5. There was no coefficient correlation between Si loss and mass loss, the degree of degradation layer depth and Si loss. 6. When observed with SEM, destruction of bonding is observed between resin matrix and filler.

  • PDF

Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization (전극 구조의 최적화를 통한 저전력 열광학 스위치 설계)

  • Choi, Chul-Hyun;Kong, Chang-Kyeng;Lee, Min-Woo;Sung, Jun-Ho;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2009
  • We designed a thermo-optic switch based on a directional coupler with not only a high extinction ratio but also significantly low power consumption. The switch operates by using the thermo-optic effect of the polymer which the refractive index changes by heating the electrode. If the electrode is not powered (OFF), the input light will be coupled completely to the other waveguide. When the electrode is powered at a certain level (ON), input light launched into the input waveguide will remain in that waveguide due to the lower index adjusted in the other waveguide. The switch based on the directional coupler was designed using the generalized extinction ratio curve and the lateral shift of the input waveguide. The coupling length is 1,610 ${\mu}m$ and the extinction ratios are -28 and -30 dB for ON and OFF states, respectively. The electrode structures were optimized by thermal analysis. The transported heat into the waveguide is increased, as the electrode width (w) is increased and the center distance between the electrode and the waveguide (d) is decreased. Also, because the heat generated in the electrode affects the other waveguide, the temperature difference between two waveguides is varied as the given w and d. There are specific conditions which have the maximum of the temperature difference. That of the temperature difference is increased as the width and the temperature of the electrode are increased. Especially, when the switch is designed using the condition with the maximum of the temperature difference for switching, the temperature of the electrode can be decreased. We expect this condition will be the novel method for the reduction of the power consumption in a thermo-optic switch.

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.