• Title/Summary/Keyword: Coupled-Fed Antenna

Search Result 40, Processing Time 0.032 seconds

Hexa-Band Hybrid MIMO Antenna for the Mobile Phone Surrounding Ground (접지에 둘러싸인 휴대폰을 위한 6중 밴드 하이브리드 MIMO 안테나)

  • Lee, Kyeong-Ho;Son, Taeho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2015
  • In this paper, we designed and implemented a PIFA(Planar Inverted F Antenna) + IFA(Inverted F Antenna) hybrid MIMO(Multi Input Multi Output) antenna for the hexa mobile communication service band. By the simultaneous operation both PIFA and IFA using the coupled feeding structure, we tried for application to modern mobile phones that have large ground size. A PIFA is applied to the ground area, and an IFA is applied to no ground small space on top of the phone. A diagonal fed MIMO antenna is implemented PCB embedded type without antenna carrier component. Implemented antenna on the bare board measured within 3 : 1 for VSWR under hexa mobile communication band as CDMA, GSM900, DCS, KPCS, USPCS, and WCDMA. Measured average gains and efficiencies were -5.19~-3.16 dBi and 30.27~48.26 % for the CDMA, GSM900 band, and -9.50~-5.19 dBi and 11.23~30.28 % for the DCS, KPCS, USPCS, WCDMA band. It's shown that studied antenna can be applied to the antenna for the modern mobile phone.

Printed 1x2 Dipole Array Antenna Fed by Tapered Stripline for Wideband (테이퍼된 스트립 선로로 급전된 광대역 프린트 1X2 다이폴 배열 안테나)

  • Seung-Yeop Rhee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.641-646
    • /
    • 2024
  • This paper is studied for the design and experiment of a wideband printed 1x2 dipole array antenna for 3.5GHz band application. The printed dipole antenna used in the array antenna was implemented in the form of a rectangular strip, and was consisted with a broadside coupled stripline (BCS). The feed line was designed to be tapered for broadband impedance matching. As a result of comparing the simulation results and measurement results, it was found that the two results were in good agreement with 2.8% error(100MHz shift @3.5GHz). As a result of the experiment, based on VSWR=2, a bandwidth of about 16% was obtained from the center frequency of 3.5 GHz to 3.15~3.70 GHz.

Design of Electromagnetically Coupled Small Broadband Monopole Antenna with Vertical Ground Plane (수직 접지면을 가지는 전자기적 결합 급전 소형 광대역 모노폴 안테나의 설계)

  • Kim Myung-Bum;Jung Jong-Ho;Choo Hosung;Park Ikmo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.632-643
    • /
    • 2005
  • This paper presents a folded stripline-fed small broadband disk-loaded monopole antenna with vertical ground plane. The bandwidth of the proposed antenna can be enhanced by electromagnetic coupling between the shorted rectangular disk and the probe with folded strip line. The measured impedance bandwidth of the proposed antenna is $37.6\%$ for $VSWR\leq2$ with the center frequency at 2.313 GHz and has the physical dimensions of only $11mm\times11mm\times11mm$ which corresponds to the electrical length of $0.085\lambda_0\times0.085\lambda_0\times0.085\lambda_0$. For improving the radiation pattern characteristics, rectangular slits are inserted in the vertical ground plane. Rectangular slits affect the currents distribution on the ground plane, so that the antenna radiation in the direction of the ground plane is reduced more than 3 dBi. Gain of the antenna is approximately 2.6 dBi within the bandwidth.

Dice-Five Polarization-Agile Corner-Fed Patch Array Antenna

  • Vallecchi, Andrea
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.250-256
    • /
    • 2005
  • A novel planar polarization-agile microstrip subarray is proposed and its performance assessed by a thorough numerical investigation. The subarray consists of five square patches with a central element, directly coupled to a pair of microstrip feed lines by a cross-shaped aperture, which spreads the power outwards to the other patches through a network of suitable connections. By properly exciting the antenna at its input ports, any kind of polarization of the radiated field can be accomplished with fairly low cross-polarization levels. Moreover, since only two feed lines are required to drive the whole subarray, polarization agility is simply and attractively achieved by a single phase-shift circuit. The design concept is described and the results of the analyses and simulations performed by two completely independent full-wave approaches are presented and discussed.

  • PDF

The radiation pattern calculation of the electromagnetically coupled microstrip dipole array antenna using the FDTD method (FDTD 방법을 이용한 전자기결합 마이크로스트립 다이폴 배열안테나의 복사패턴 계산)

  • 손영수;윤현보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1459-1467
    • /
    • 1997
  • The current on the thin planar structure as an element of the transversely fed electromagnetically coupled(EMC) microstrip dipole array antenna is obtained by using the integral forms of the finite difference time domain(FDTD) method. This method was applied to calculating the optimum current distribution (Doplh-Tchebyscheff distribution) of each dipole element on the feed line as a function of their offset positions for the narrow main beam width and the side beam level below -20 dB. The current on each dipole substitutes for the electric and magnetic current densities on the virtual surface of the FDTD calculation to express the far field intensity, the calculation time and the computer memeory can be reduced to about 80% and 1.3 Mbyte, respectively. The calculated radiation patterns are compared to the measured values and these are in good agreement.

  • PDF

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

On the Necessity of Cavity-type Coupling Mechanism for obtaining Circular Polarization with Microstrip Patch Antenna

  • Abegaonkar, Mahesh P.;Cho, Young-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.459-463
    • /
    • 2003
  • A circularly polarized microstrip patch antenna (MPA) using electromagnetic (EM) coupled fed method is analyzed in view of the two types of coupling mechanisms viz. cavity and parasitic type, proposed earlier. The patch-ground plane distance is varied in order to achieve the fore-mentioned types of couplings. For each case of patch-ground plane distance, the offset position of feedline is optimized for perfect matching and the boresight axial ratio (AR) is observed. It is seen that CP operation is possible only for cavity-type coupling (smaller patch-ground plane distances). The simulated results for the boresight AR for the two types of coupling mechanisms are presented.

  • PDF

Analysis of microstrip antenna with waveguide feeding structure (도파관 급전 구조를 가진 마이크로스트립 안테나의 해석)

  • 최상훈;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1740-1746
    • /
    • 1997
  • In this paper, a waveguide-fed slot-coupled microstrip antenna is proposed as enhanced feeding structure of microstrip antenna and an analysis is presented. The presence of dielectric substrate between a stripand a slot is explicitly taken into account in this analysis. The evaluation of the antenna characteristics is carried out using the method of mements and the spectral domain approach in terms of the electric current distribution on the strip and the magnetic current distribution on the slot. From the results, we can conclude that the proposed structure is adequate for array antennas, due to ease of mass porduction and enhanced anteena performance.

  • PDF

Novel Coupling Condition between Optical Fiber and Microstrip Antenna in Photonic Antenna (Photonic 안테나에서 광섬유와 마이크로스트립 안테나사이의 새로운 결합조건)

  • Ho Kwang-Chun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.31-37
    • /
    • 2006
  • Strongly motivated by the need for significant reduction in the optics-to-antenna interface circuitry used in a Photonically controlled array, it has proposed the design development of a novel 'true photonic antenna' consisted of optical fiber and micro-strip antenna. To clarify the design capability of the geometry, modal transmission-line theory including the discontinuity property between circular i,nd planar guiding structures is defined, md the optical power coupling of a slot-coupled microstrip antenna directly fed from an optical fiber using photoconductive effect is evaluated numerically. The numerical results reveal that the maximum power transfer between the two different guiding structures occurs at a new point in which the guiding powers of two rigorous modes are equally partitioned.

Microstrip Antenna with Switchable Polarization (편파 변환 기능을 갖는 마이크로스트립 안테나)

  • Jung Dongkeun;Ha Cheunsoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.397-401
    • /
    • 2005
  • In this paper, a slot-coupled microstrip antenna with switchable polarization is proposed for the polarization diversity applications in the complicated communication environment. The proposed antenna is fed by a microstrip line through one of two slots located with the interval of $\lambda{g}/4$ in the ground plane. By switching the PIN diode between opened and shorted termination which is located at the tip of the microstrip line, the switching function between horizontal and vertical polarization was confirmed experimentally. The measured resonant frequencies of the fabricated antenna are $2.41\;\cal{GHz}\;2.40\;\cal{GHz}$ and the cross polarization levels are $19\;\cal{dB},\;23\;\cal{dB},\;the\;-10\;\cal{dB}$ return loss bandwidths are $95\;\cal{MHz}\;100\;\cal{MHz}$ in horizontal and vertical polarization, respectively, and the antenna gain is almost $6\;\cal{dBi}$.