• 제목/요약/키워드: Coupled field

검색결과 1,178건 처리시간 0.025초

결합형 유한요소-경계요소기법을 사용한 PZT4 구형 쉘 형태의 히드로폰 시뮬레이션 (PZT4 spherical shell-typed hydrophone simulation using a coupled FE-BE method)

  • S.S. Jarng
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 춘계종합학술대회
    • /
    • pp.394-399
    • /
    • 1998
  • This paper describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a hydrophone. The particular structure considered is a flooded piezoelectric spherical shell. The hydrophone is three-dimensionally simulated to transduce an incident plane acoustic pressure onto the outer surface of the sonar spherical shell to electrical potentials on inner and outer surfaces of the shell. The acoustic field formed from the scattered sound pressure is also simulated. And the displacement of the shell caused by the externally incident acosutic pressure is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

교환 결합력을 갖는 CoFe/MnIr 박막에서 강자성 공명 선폭의 각도 의존성 연구 (Angular Dependence of Ferromagnetic Resonance Linewidth in Exchange Coupled CoFe/MnIr Bilayers)

  • 윤석수;김동영
    • 한국자기학회지
    • /
    • 제26권2호
    • /
    • pp.50-54
    • /
    • 2016
  • 본 연구에서는 교환 결합력을 갖는 CoFe/MnIr 박막 재료의 각도에 따른 강자성 공명 선폭 변화 특성을 분석하였다. 선폭의 최대 및 최소값은 교환 결합력에 의한 일방 이방성의 자화 곤란축 및 용이축 방향에서 각각 관측되었으며, 고정된 MnIr의 스핀에 의한 교환 바이어스 자기장의 각도 의존성과 일치하였다. 따라서, 최대 선폭은 고정된 MnIr 스핀의 반대 방향에서 자기장 방향으로 꼬여있는(twist) CoFe의 자화에 기인한다. 한편, CoFe 단일 박막에 비하여 증가된 최소 선폭은 각도 의존성이 없는 회전 이방성 자기장과 관련되며, 선폭 증가의 원인은 MnIr 입도의 자화 용이축 분포 특성으로 설명된다.

구조센서의 효율적인 구성을 통한 구조 음향연성 평판의 방사음 예측 (Prediction of Radiated Sound on Structure-acoustic Coupled Plate by the Efficient Configuration of Structural Sensors)

  • 이옥동;오재응
    • 한국소음진동공학회논문집
    • /
    • 제24권9호
    • /
    • pp.695-705
    • /
    • 2014
  • In this paper, two types of techniques for the prediction of radiated sound pressure due to vibration of a structure are investigated. The prediction performance using wave-number sensing technique is compared to that of conventional prediction method, such as Rayleigh's integral method, for the prediction of far-field radiated sound pressure. For a coupled plate, wave-number components are predicted by the vibration response of plate and the prediction performance of far-field sound is verified. In addition, the applicability of distributed sensors that are not allowable to Rayleigh's integral method is considered and these can replace point sensors. Experimental implementation verified the prediction accuracy of far-field sound radiation by the wave-number sensing technique. Prediction results from the technique are as good as those of Rayleigh's integral method and with distributed sensors, more reduced computation time is expected. To predict the radiated sound by the efficient configuration of structural sensors, composed(synthesized) mode considering sound power contribution is determined and from this size and location of sensors are chosen. Four types of sensor configuration are suggested, simulated and compared.

CFD-DEM modeling of snowdrifts on stepped flat roofs

  • Zhao, Lei;Yu, Zhixiang;Zhu, Fu;Qi, Xin;Zhao, Shichun
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.523-542
    • /
    • 2016
  • Snowdrift formation on roofs should be considered in snowy and windy areas to ensure the safety of buildings. Presently, the prediction of snowdrifts on roofs relies heavily on field measurements, wind tunnel tests and numerical simulations. In this paper, a new snowdrift modeling method by using CFD (Computational Fluid Dynamics) coupled with DEM (Discrete Element Method) is presented, including material parameters and particle size, collision parameters, particle numbers and input modes, boundary conditions of CFD, simulation time and inlet velocity, and coupling calculation process. Not only is the two-way coupling between wind and snow particles which includes the transient changes in snow surface topography, but also the cohesion and collision between snow particles are taken into account. The numerical method is applied to simulate the snowdrift on a typical stepped flat roof. The feasibility of using coupled CFD with DEM to study snowdrift is verified by comparing the simulation results with field measurement results on the snow depth distribution of the lower roof.

Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads

  • Hjaji, Mohammed A.;Mohareb, Magdi
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.787-813
    • /
    • 2014
  • Starting with Hamilton's variational principle, the governing field equations for the steady state response of thin-walled beams under harmonic forces are derived. The formulation captures shear deformation effects due to bending and warping, translational and rotary inertia effects and as well as torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist of four coupled differential equations in the unknown displacement field variables. A general closed form solution is then developed for the coupled system of equations. The solution is subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A super-convergent finite element is then formulated based on the exact shape functions. Key features of the element developed include its ability to (a) isolate the steady state response component of the response to make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding shear locking phenomena, and (e) eliminate the need for time discretization. The results based on the present solution are found to be in excellent agreement with those based on finite element solutions at a small fraction of the computational and modelling cost involved.

정전기력을 이용한 미소기전 구동기의 고유치 변화 해석에 관한 연구 (Numerical Approach for Frequency-Shifting Analysis of Electrostatic Micro-Mechanial Actuator)

  • 이완술;권기찬;김봉규;조지현;윤성기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.854-859
    • /
    • 2001
  • An eigenvalue analysis of a tunable micro-mechanical actuator is presented. The actuator is modeled as a continuum structure. The eigenvalue modified by the tuning voltage is computed through the linearization of the relation between the electrostatic force and the displacement at the equilibrium. A staggered algorithm is employed to perform the coupled analysis of the electrostatic and elastic fields. The stiffness matrix of the actuator is modified at this equilibrium state. The displacement field is perturbed using an eigenmode profile of the actuator. The configuration change of the actuator due to perturbation modifies the electrostatic field and thus the electrostatic force. The equivalent stiffness matrix corresponding to the perturbation and the change in the electrostatic force is then added to stiffness matrix in order to explain natural frequency shifting. The numerical examples are presented and compared with the experiments in the literatures.

  • PDF

축 방향 자장이 인가된 용량 결합형 라디오 주파수 플라즈마의 특성 연구 (A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma)

  • 이호준;이동영;태흥식;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1066-1068
    • /
    • 1999
  • Magnetic field is commonly used in low temperature processing plasmas in order to obtain high density. E $\times$ B magnetron or surface multipole configuration were most popular. However, the properties of capacitively coupled rf plasma confined by axially applied static magnetic fields have rarely been studied. In this paper, the effects of magnetic field on the characteristics of 13.56MHz/40KHz argon plasma will be reported. Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and omissive probe. At low pressure region ($\sim$10mTorr), ion current was increased by a factor of 3 - 4 due to reduction of diffusion loss of charged particles to the wall. It was observed that magnetic field induces large time variation of the plasma potential. The experimental result was compared with particle-in-cell simulation. It was also observed that electron temperature tend to decrease with increasing magnetic induction level for 40KHz discharge.

  • PDF

Analysis of Symmetric and Periodic Open Boundary Problem by Coupling of FEM and Fourier Series

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.130-134
    • /
    • 2013
  • Most electrical machines like motor, generator and transformer are symmetric in terms of magnetic field distribution and mechanical structure. In order to analyze these problems effectively, many coupling techniques have been introduced. This paper deals with a coupling scheme for open boundary problem of symmetric and periodic structure. It couples an analytical solution of Fourier series expansion with the standard finite element method. The analytical solution is derived for the magnetic field in the outside of the boundary, and the finite element method is for the magnetic field in the inside with source current and magnetic materials. The main advantage of the proposed method is that it retains sparsity and symmetry of system matrix like the standard FEM and it can also be easily applied to symmetric and periodic problems. Also, unknowns of finite elements at the boundary are coupled with Fourier series coefficients. The boundary conditions are used to derive a coupled system equation expressed in matrix form. The proposed algorithm is validated using a test model of a bush bar for the power supply. And the each result is compared with analytical solution respectively.

상장모델과 유한요소법의 연계해석을 통한 변태소성 전산모사 (Numerical Calculation of Transformation Plasticity Using a FE Analysis Coupled with n Phase Field Model)

  • 조이길;김진유;차필령;이재곤;한흥남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.318-321
    • /
    • 2009
  • Transformation plasticity is that when a phase transformation of ferrous or non-ferrous alloys progresses even under an extremely small applied stress compared with a yield stress of the material, a permanent deformation occurs. One of widely accepted description for the transformation was proposed by Greenwood and Johnson [1]. Their description is based on an assumption that a weaker phase of an ideal plastic material could deform plastically to accommodate the externally applied stress and the internal stress caused by the volumetric change accompanying the phase transformation. In this study, an implicit finite element model was developed to simulate the deformation behavior of a low carbon steel during phase transformation. The finite element model was coupled with a phase field model, which could simulate the kinetics for ferrite to austenite transformation of the steel. The thermo-elasto-plastic constitutive equation for each phase was adopted to confirm the weaker phase yielding, which was proposed by Greenwood and Johnson [1]. From the simulation, the origin of the transformation plasticity was quantitatively discussed comparing with the other descriptions of it.

  • PDF

방전현상 해석을 위한 전자장 및 전하이동 방정식의 비선형 결합 알고리즘 (Electric Discharge Analysis Using Nonlinarly-Coupled Equation of Electromagnetic Field and Charge Transport)

  • 이세연;박일한;이세희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1494-1495
    • /
    • 2006
  • A complete finite element analysis method for discharge onset process, which is governed and coupled by charge transport equation and electric field equation, was presented. The charge transport equation of first order was transformed into a second-order one by utilizing the artificial diffusion scheme. The two second-order equations were analyzed by the finite element formulation which is well-developed for second-order ones. The Fowler-Nordheim injection boundary condition was adopted for charge transport equation. After verifying the numerical results by comparing to the analytic solutions using parallel plane electrodes with one carrier system, we extended the result to blade-plane electrodes in 2D xy geometry with three carriers system. Radius of the sharp tip was taken to be 50 ${\mu}m$. When this sharp geometry was solved by utilizing the space discretizing methods, the very sharp tip was found to cause a singularity in electric field and space charge distribution around the tip. To avoid these numerical difficulties in the FEM, finer meshes, a higher order shape function, and artificial diffusion scheme were employed.

  • PDF