• Title/Summary/Keyword: Coupled field

Search Result 1,171, Processing Time 0.027 seconds

Effects of the Capacitive Field in an Inductively Coupled Plasma Discharge

  • Choe, HeeHwan
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.114-117
    • /
    • 2017
  • Plasma characteristics of two-dimensional inductively coupled discharge simulation is investigated. Impedance of an inductively coupled plasma discharge was considered. Voltage drops across antenna coils and current variation between coils made different profiles of plasma characteristics. Importance of the capacitive field effect in some case was analyzed.

Electrorheology of HMDA Coupled Chitosan Succinate Suspension as an Anhydrous ER Fluid

  • Kong, Seong-Wook;Kim, Seung-Wook;Lee, Sang-Soon;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.7-9
    • /
    • 2008
  • The electrorheology of the HMDA coupled chitosan succinate suspension in silicone oil was investigated. HMDA coupled chitosan succinate suspension showed a typical ER response upon application of an electric field. The shear stress for the HMDA coupled chitosan succinate suspension exhibited an electric field power of 2.0. The experimental results for the HMDA coupled chitosan succinate suspension was found to be an anhydrous ER fluid.

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Coupled Field Circuit Analysis for Characteristic Comparison in Barrier Type Switched Reluctance Motor

  • Lee J.Y.;Lee G.H.;Hong J.P.;Hur J.;Kim Y.K.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.267-271
    • /
    • 2005
  • This paper deals with two kinds of novel shape switched reluctance motors (SRM) with magnetic barriers in order to improve operating performances of prototype. The magnetic barriers make rotor poles more saturated, and consequently inductance profiles are distorted. The changed inductance affects input current shape and eventually torque characteristics. In order to analyze the complicated flux pattern of the SRM with magnetic barriers and its terminal characteristics simultaneously, coupled field circuit modeling method is used. The finite element method is used to model the nonlinear magnetic field, and coupled to the circuit model of the SRM overall system. After experimental results are presented to prove the accuracy of the method, the several analysis results are compared, and the improved rotor shape is presented.

The Analysis of Transmission Characteristics of Closed Structure with Internal Source Using FEM/BEM (유한.경계요소법을 이용한 내부음원을 갖는 닫힌 구조물의 차음 특성 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong;Seo, Yeung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.318-321
    • /
    • 2005
  • In vibro-acoustic analysis, the commercial CAE tools, such as SYSNOISE, is usually used to take into account of the coupled effects of fluid acoustics and structural vibration. The acoustic field can be solved by either FEM or BEM, while the vibration field is usually solved by FEM. The interior or exterior acoustic problems with the coupled effects of the structural boundary could be solved by the commercial tools. The commercial tools, however, could not solve the problems in case that both the interior and exterior acoustic field is coupled with the structural boundary. In this paper, a realistic method based on FEM/BEM coupling scheme is presented to analyze the acoustic radiation from the internal source in a chamber to external acoustic field through elastic structural boundary. Several numerical examples are implemented to validate the developed program.

  • PDF

A Study of Coupled Electromagnetic-Thermal Field Analysis for Temperature Rise Prediction of Power Transformer (전력용 변압기의 온도상승 예측을 위한 전자계-열계 결합해석기법 연구)

  • Ahn, Hyun-Mo;Kim, Min-Soo;Song, Jae-Sung;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1838-1845
    • /
    • 2011
  • This paper deals with coupled electromagnetic-thermal field analysis for thermal fluid analysis of oil immersed power transformer. Electric power losses are calculated from electromagnetic field analysis and are used as input source of thermal field analysis based on computational fluid dynamics(CFD). Particularly, In order to accurately predict the temperature rise in oil immersed power transformer, the thermal problem should be coupled with the electromagnetic problem. Moreover, to reduce analysis region, the heat transfer coefficient is applied to boundary surface of the power transformer model. The coupling method results are compared with the experimental values for verifying the validity of the analysis. The predicted temperature rises show good agreements with the experimental values.

Multi-objective Optimization of Butterfly Valve using the Coupled-Field Analysis and the Statistical Method (연성해석과 통계적 방법을 이용한 Butterfly Valve의 다목적 최적설계)

  • 배인환;이동화;박영철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.127-134
    • /
    • 2004
  • It is difficult to have the existing structural optimization using coupled field analysis from CFD to structure analysis when the structure is influenced of fluid. Therefore in an initial model of this study after doing parameter design from the background of shape using topology optimization. and it is making a approximation formula using by the CFD-structure coupled-field analysis and design of experiment. By using this result, we conducted multi-objective optimization. We could confirm efficiency of stochastic method applicable in the scene of structure reliability design to be needed multi-objective optimization. And we presented a way of design that could overcome the time and space restriction in structural design such as the butterfly valve with the less experiment.

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer (전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측)

  • Ahn, Hyun-Mo;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.