• 제목/요약/키워드: Coupled Variables

검색결과 340건 처리시간 0.027초

Three Dimensional Analysis of High Frequency Induction Welding Phenomena (고주파 유도용접 현상의 3차원 해석)

  • Kim Hyun-Jung;Youn Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제30권7호
    • /
    • pp.865-872
    • /
    • 2006
  • High frequency induction welding is widely employed for longitudinal seam welding of small scale tubes and pipes because of its relatively high processing speed and efficiency. This research is aimed at understanding the variables that affect the quality of the high frequency induction welding. The welding variables include the welding frequency, weld speed, V-angle and tube thickness. Temperature distribution of the tube is calculated through three dimensional coupled electromagnetic and thermal FE analysis. The skin and proximity effects are considered in the electromagnetic analysis. The influence of the impeder is also analyzed. The effects of the operating welding variables on the temperature distribution are investigated quantitatively by exhibiting the heat affected zone (HAZ). The results explain the mechanism of significant enhancement of welding efficiency when the impeder is used. The proper welding conditions without the overheated edge are obtained through FE analysis.

A Method of Multidisciplinary Design Optimization via Coordination of Interdisciplinary Design Variables (분야간 연성된 설계변수의 처리를 통한 다분야통합최적설계 방법)

  • Jeong, Hee-Seok;Lee, Hyung-Joo;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.380-385
    • /
    • 2001
  • The paper presents a new multidisciplinary design optimization architecture using optimal sensitivity and coordination of interdisciplinary design variables. Original design problem is decomposed into a number of sub-problems that represent individual engineering analysis. The coupled effects between sub-problems are computed by interdisciplinary design variables. System level coordination is determined by optimal parameter sensitivity calculated by finite difference method. The proposed. MDO strategy is applied to a simplified model of rotorcraft blade design associated with structures and aerodynamic disciplines.

  • PDF

Elastic lateral-distortional buckling of I-beams and the Meck Plot

  • Zirakian, Tadeh;Nojoumi, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.297-307
    • /
    • 2011
  • Meck Plot is an adapted version of the well-known Southwell method to the case of lateral-torsional buckling, which indeed reflects the physical inter-dependence of lateral flexure (lateral displacement) and torsion (rotation) in the structure. In the recent reported studies, it has been shown experimentally and theoretically that lateral displacement of an I-beam undergoing elastic lateral-distortional mode of buckling is interestingly directly coupled with other various deformation characteristics such as web transverse strain, web longitudinal strain, vertical deflection, and angles of twist of top and bottom flanges, and consequently good results have been obtained as a result of application of the Meck's method on lateral displacement together with each of the aforementioned deformation variables. In this paper, it is demonstrated that even web transverse and longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges of an I-beam undergoing elastic lateral-distortional buckling are two-by-two directly coupled and the application of the Meck Plot on each pair of these deformation variables may still yield reliable predictions for the critical buckling load.

Complementary Analysis in Reduced Dimension (of Mutual Inductance Imbedded Network)

  • 이태원;안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제10권5호
    • /
    • pp.39-44
    • /
    • 1973
  • In general, solution of electric networks requires both node and loop analysis, in which node pair voltages and loop currents are treated as network variables, but the conjugate quantities of these variables (the branch currents and node pair voltages respectively) are to be obtained through additional solving operation. In case of networks with magnetic coupling, however, the coupling keeps the conjugate variables mutually dependent and its final solution requires further calculation. In this paper is analyzed the method of obtaining the conjugate quantities through treatment of the problrm in a subspace with dimensions of number of magnetically coupled branches.

  • PDF

Formulation of Fully Coupled THM Behavior in Unsaturated Soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • 제27권3호
    • /
    • pp.75-83
    • /
    • 2011
  • Emerging issues related with fully coupled Thermo-Hydro-Mechanical (THM) behavior of unsaturated soil demand the development of a numerical tool in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from three mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. With Galerkin formulation and time integration of these governing equations, finite element code is developed to find nonlinear solution of four main variables (displacement-u, gas pressure-$P_g$), liquid pressure-$P_1$), and temperature-T) using Newton's iterative scheme. Three cases of numerical simulations are conducted and discussed: one-dimensional drainage experiments (u-$P_g-P_1$), thermal consolidation (u-$P_1$-T), and effect of pile on surrounding soil due to surface temperature variation (u-$P_1$-T).

An Application of DoE Methodology in WAVE Simulation to Identify the Effectiveness of Variables on Engine Performance and to Optimize Responses (실험계획법과 WAVE 시뮬레이션을 이용한 엔진 작동 변수의 영향도 평가 및 최적화에 대한 연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제17권5호
    • /
    • pp.16-25
    • /
    • 2009
  • Testing engine performance using an engine dynamometer requires high technical researchers and many facilities. Nowadays, different variables of CAE program are used for identifying the engine performance instead of engine dynamometer test. This is more convenience, as it does not necessitate an abundance of engine dynamometer experiments and, in addition, produces better results. However, CAE programs also contain various variables which can affect engine performance. Those are coupled with each other, thus making it difficult to determine the effectiveness of different variables on engines. DoE (Design of Experiments) methodology is an efficient way to verify the magnitude of effectiveness on engine performance as well as making responses to be optimized at once without trial & error. This study used data from WAVE simulations, which modeled the DOHC SI engine with in-line 4 cylinders at 1500, 3000 and 4500rpm. DoE methodology is designed properly to determine the effectiveness of five variables on power, BSFC, and volumetric efficiency, as well as to find the optimal response conditions at each rpm through a minimized number of experiments. After finishing DoE process, all the results are examined concerning the reliability of test through a verification experiment.

Theoretical formulation of double scalar damage variables

  • Xue, Xinhua;Zhang, Wohua
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.501-507
    • /
    • 2017
  • The predictive utility of a damage model depends heavily on its particular choice of a damage variable, which serves as a macroscopic approximation in describing the underlying micromechanical processes of microdefects. In the case of spatially perfectly randomly distributed microcracks or microvoids in all directions, isotropic damage model is an appropriate choice, and scalar damage variables were widely used for isotropic or one-dimensional phenomenological damage models. The simplicity of a scalar damage representation is indeed very attractive. However, a scalar damage model is of somewhat limited use in practice. In order to entirely characterize the isotropic damage behaviors of damaged materials in multidimensional space, a system theory of isotropic double scalar damage variables, including the expressions of specific damage energy release rate, the coupled constitutive equations corresponding to damage, the conditions of admissibility for two scalar damage effective tensors within the framework of the thermodynamics of irreversible processes, was provided and analyzed in this study. Compared with the former studies, the theoretical formulations of double scalar damage variables in this study are given in the form of matrix, which has many features such as simpleness, directness, convenience and programmable characteristics. It is worth mentioning that the above-mentioned theoretical formulations are only logically reasonable. Owing to the limitations of time, conditions, funds, etc. they should be subject to multifaceted experiments before their innovative significance can be fully verified. The current level of research can be regarded as an exploratory attempt in this field.

A set of failure variables for analyzing stability of slopes and tunnels

  • Kim, Jun-Mo;Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Park, Sangho
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.175-189
    • /
    • 2020
  • A set of relatively simple five local shear and tension failure variables is presented and then implemented into a generalized poroelastic hydromechanical numerical model to analyze failure potential and stability of variably saturated geologic media. These five local shear and tension failure variables are formulated from geometrical relationships between the Mohr circle and the Mohr-Coulomb failure criterion superimposed with the tension cutoff, which approximate together the Mohr effective stress failure envelope. Finally, fully coupled groundwater flow and land deformation in two variably saturated geologic media, which are associated with a slope (Case 1) and a tunnel (Case 2), respectively, and their failure potential and stability are simulated using the resultant hydromechanical numerical model. The numerical simulation results of both cases show that shear and tension failure potential and stability of variably saturated geologic media can be analyzed numerically simply and efficiently and even better by using the five local shear and tension failure variables as a set than by using the conventional factors of safety against shear and tension failures only.

A state space method for coupled flutter analysis of long-span bridges

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.491-504
    • /
    • 2002
  • A state-space method is proposed to analyze the aerodynamically coupled flutter problems of long-span bridges based on the modal coordinates of structure. The theory about complex modes is applied in this paper. The general governing equation of the system is converted into a complex standard characteristic equation in a state space format, which contains only two variables. The proposed method is a single-parameter searching method about reduced velocity, and it need not choose the participating modes beforehand and has no requirement for the form of structure damping matrix. The information about variations of system characteristics with reduced velocity and wind velocity can be provided. The method is able to find automatically the lowest critical flutter velocity and give relative amplitudes, phases and energy ratios of the participating modes in the flutter motion. Moreover, the flutter analysis of Jiangyin Yangtse suspension bridge with 1385 m main span is performed. The proposed method has proved reliable in its methodology and efficient in its use.

A Study on Dynamic Analysis of the Electrostatic Actuator (정전력 구동기의 동특성 해석)

  • Lee S.K.;Kim J.N.;Moon W.K.;Choi J.H.;Park I.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.686-689
    • /
    • 2005
  • A numerical simulation method is developed to analyze the dynamic response of a cantilever switch, which is driven by electrostatic force and a basic component of electro-mechanical coupled system. First, point-charges model on conductor is proposed as a lumped parameter of electrical part. Then, this model is easily incorporated into a multi-body dynamics analysis algorithm, the generalized recursive dynamics formula previously developed by our research group. The resulting motion of a coupled overall system is formulated as a differential algebraic equation form including electrical and mechanical variables together. The equation is simultaneously solved in every time step. To implement this approach into the useful dynamics analysis tool, we used multibody dynamics software (RecurDyn) based on the generalized recursive formula using relative coordinate. The developed numerical simulation tool is evaluated by applying to many different driving condition and switch configuration. The final analysis model will be added to RecurDyn as a basic module for dynamics analysis of electro-mechanical coupled system.

  • PDF