• Title/Summary/Keyword: Coupled Noise

Search Result 684, Processing Time 0.026 seconds

Novel Design of 8T Ternary SRAM for Low Power Sensor System

  • Jihyeong Yun;Sunmean Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.152-157
    • /
    • 2024
  • In this study, we propose a novel 8T ternary SRAM that can process three logic values (0, 1, and 2) with only two additional transistors, compared with the conventional 6T binary SRAM. The circuit structure consists of positive and negative ternary inverters (PTI and NTI, respectively) with carbon-nanotube field-effect transistors, replacing conventional cross-coupled inverters. In logic '0' or '2,' the proposed SRAM cell operates the same way as conventional binary SRAM. For logic '1,' it works differently as storage nodes on each side retain voltages of VDD/2 and VDD, respectively, using the subthreshold current of two additional transistors. By applying the ternary system, the data capacity increases exponentially as the number of cells increases compared with the 6T binary SRAM, and the proposed design has an 18.87% data density improvement. In addition, the Synopsys HSPICE simulation validates the reduction in static power consumption by 71.4% in the array system. In addition, the static noise margins are above 222 mV, ensuring the stability of the cell operation when VDD is set to 0.9 V.

Improvement of Phase Noise Characteristics of Continuous Wave in the Sub-Millimeter Bands Generated by Photomixing Using Polarization and Phase Mismatch (편광 및 위상 부정합을 이용한 광혼합을 통하여 발생된 서브 밀리미터파 대역 연속파의 위상 잡음 특성 개선)

  • Kim, Sung-Il;Kang, Kwang-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.617-626
    • /
    • 2010
  • In this paper, we have proposed and experimentally performed a polarization and phase control method of an optical signal which has same wavelength with the optical carrier to improve phase characteristics of a continuous wave(CW) generated by the double sideband-suppressed carrier(DSB-SC) as one of the famous photomixing technique for making sub-millimeter and terahertz waves. A polarization and phase controlled optical signal has been coupled with the general DSB-SC on an optical coupler. The output of the optical coupler is then photomixed by a photomixer. From our analysis and measurement results, we have found that the amplitude of the generated sub-mm and terahertz CW signal is higher 1.5 dB and the phase noise is lower about 3 dB@10 kHz offset frequency than the general DSBSC. Consequently, since our proposed method has improved the amplitude and phase noise of CW signals in the sub-mm and terahertz bands, it can be helpful results to make low cost CW generator in sub-millimeter and subterahertz bands.

A Study on Dose and Image Quality according to X-ray Photon Detection Method in Digital Radiography System (Digital Radiography System에서 X선 광자 검출 방식에 따른 선량 및 화질 특성에 관한 연구)

  • Hong, Sun Suk;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.247-253
    • /
    • 2013
  • The purpose is a comparative evaluation in the DR System according to the dosimetry and image quality of the quantitative and objective via Direct digital radiography, Indirect digital radiography, Image intensifier (Charge Coupled Device type) digital radiography. The experimental method used rando phantom and measured the entrance surface dose. And through using the measured entrance surface dose and then using the PCXMC program were evaluated risk due to irradiation and the effective dose. SNR and NPS and CNR were measured and analyzed by using 21cm acryl phantom. Significance of measured value was evaluated by statistics method. Entrance surface dose, major organ dose, effective dose all of them were measured the lowest rated in direct DR when it is on the basis of direct DR dose, high-dose ratio were measured in I.I DR approximately 1.3 times, indirect DR approximately 2.4 times. Risk in accordance with radiation also was measured same as dose ratio. On the conclusion that SNR measurement result based on direct DR SNR measurements, low-SNR ratio were measured in I.I DR approximately 7.25 times, indirect DR approximately 1.48 times. On the conclusion that CNR measurement result based on direct DR CNR measurements, high-dose ratio were measured in I.I type DR approximately 1.16 tims and low-dose ratio were measured in indirect DR approximately 0.87 times. Therefore Direct DR system using a-selenium sensing element to detect x-ray photon is thought effectively at the examination such as infant to sensitive irradiation and the genital gland. Because quality image is built by low dose. Also when it is necessary that image test requiring many diagnosis information, indirect DR system is thought effectively.

A Microwave Push-Push VCO with Enhanced Power Efficiency in GaInP/GaAs HBT Technology (향상된 전력효율을 갖는 GaInP/GaAs HBT 마이크로파 푸쉬-푸쉬 전압조정발진기)

  • Kim, Jong-Sik;Moon, Yeon-Guk;Won, Kwang-Ho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.71-80
    • /
    • 2007
  • This paper presents a new push-push VCO technique that extracts a second harmonic output signal from a capacitive commonnode in a negativegm oscillator topology. The generation of the $2^{nd}$ harmonics is accounted for by the nonlinear current-voltage characteristic of the emitter-base junction diode causing; 1) significant voltage clipping and 2) different rising and falling time during the switching operation of core transistors. Comparative investigations show the technique is more power efficient in the high-frequency region that a conventional push-push technique using an emitter common node. Prototype 12GHz and 17GHz MMIC VCO were realized in GaInP/GaAs HBT technology. They have shown nominal output power of -4.3dBm and -5dBm, phase noise of -108 dBc/Hz and -110.4 dBc/Hz at 1MHz offset, respectively. The phase noise results are also equivalent to a VCO figure-of-merit of -175.8 dBc/Hz and -184.3 dBc/Hz, while dissipate 25.68mW(10.7mA/2.4V) and 13.14mW(4.38mA/3.0V), respectively.

A Study on the characteristic analysis and optimization according to Ballast design of Induction Lamp (고출력 무전극램프의 점등회로 설계를 통한 특성분석 및 최적화에 관한 연구)

  • Chung, Young-Il;Jung, Dae-Chul;Park, Dae-Hee;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, we implemented for the development of a high output induction lamp system, which lamp design is optimized by gas type, mixing ratio, pressure and discharge tube size, amalgam type and mixing ratio, and characteristics of ferrite core in the lamp. It's the circuit design by improving the power factor and efficiency according to the driving method, which has analyzing the characteristics according to the waveform and frequency. Finally, luminaries design part for applying the optimal lighting system considering the surrounding environment, the characteristics of the lighting circuit for electrodeless lamp has analyzed and the improvement has been proceeded. In conclusion, the driving frequency has optimized at 135kHz with degrading $7{\sim}10^{\circ}C$ based on the results of the optical characteristics of the induction lamp on peak noise FET(Q3,Q4) damage.

Snoring Detection using Polyvinylidene Fluoride Vibration Sensors (Polyvinylidene Fluoride 진동센서를 이용한 코골이 검출)

  • Jee, Duk-Keun;Wei, Ran;Kim, Hee-Sun;Im, Jae-Joong
    • Science of Emotion and Sensibility
    • /
    • v.14 no.3
    • /
    • pp.459-466
    • /
    • 2011
  • Sleep diseases such as snoring and sleep apnea are physically, mentally harmful and results serious health problems. Snoring, known as breathing noise, is caused by coupled oscillation of the airway when the air passes through the trachea, and sleep apnea is caused by upper airway blockage. In order to solve these problems, many attempts have been made to detect the snoring during sleep and alleviate it. In this study, a new sensing system and analysis algorithm were developed in order to detect snoring sounds correctly under various sleep environments. Two polyvinylidene fluoride (PVDF) vibration sensors were used inside the pillow. The first PVDF sensor detects vibration transmitted through skull caused by snoring. And the second PVDF sensor detects both snoring sounds and ambient noises. The signals of two sensors were acquired through the designed analog circuits, and analyzed for snoring detection. Ten volunteers were participated for the experiment under five different conditions. Data from two PVDF sensors were processed by the established analysis algorithm, and snoring sounds were compared to noises. The results indicated that the energy of snoring is 70% bigger than that of ambient noise, which proves effectiveness of sensing system and analysis algorithm. Further study would be continued for more wide clinical studies with various environment noises. Based on this study, development of anti-snore pillow and sleep monitoring system for comfort sleep could be developed.

  • PDF

Novel Extraction Method for Unknown Chip PDN Using De-Embedding Technique (De-Embedding 기술을 이용한 IC 내부의 전원분배망 추출에 관한 연구)

  • Kim, Jongmin;Lee, In-Woo;Kim, Sungjun;Kim, So-Young;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.633-643
    • /
    • 2013
  • GDS format files, as well as layout of the chip are noticeably needed so as to analyze the PDN (Power Delivery Network) inside of IC; however, commercial IC in the market has not supported design information which is layout of IC. Within this, in terms of IC having on-chip PDN, characteristic of inside PDN of the chip is a core parameter to predict generated noise from power/ground planes. Consequently, there is a need to scrutinize extraction method for unknown PDN of the chip in this paper. To extract PDN of the chip without IC circuit information, the de-embedding test vehicle is fabricated based on IEC62014-3. Further more, the extracted inside PDN of chip from de-embedding technique adopts the Co-simulation model which composes PCB, QFN (Quad-FlatNo-leads) Package, and Chip for the PDN, applied Co-simulation model well corresponds with impedance from measured S-parameters up to 4 GHz at common measured and simulated points.

Evaluation of Surface Moisture Content of Liriodendron tulipifera Wood in the Hygroscopic Range Using NIR Spectroscopy (근적외선 분광분석법을 이용한 백합나무 목재의 섬유포화점 이하 표면함수율 평가)

  • Eom, Chang-Deuk;Han, Yeon-Jung;Chang, Yoon-Sung;Park, Jun-Ho;Choi, Joon-Weon;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.526-531
    • /
    • 2010
  • For efficient use of wood, it is important to control moisture of wood in processing wood. Near-infrared (NIR) spectroscopy can be used to estimate the physical and chemical properties of materials quickly and nondestructively. In this study, it was intended to measure the moisture contents on the surface of wood using NIR spectroscopy coupled with multivariate analytic statistical techniques. Because NIR spectroscopy is affected by the chemical components of the specimens and contains signal noise, a regression model for detecting moisture content of wood was established after carrying out several numerical pretreatments such as Smoothing, Derivative and Normalization in this study. It shows that the regression model using NIR absorbance in the range of 750~2,500 nm predicts the actual surface moisture content very well. Near-infrared spectroscopy technique developed in this study is expected to improve a technology to control moisture content of wood in using and drying process.

A Study on Signal Analysis of the Data Aquisition System for Photosensor (데이터 획득장치에 이용되는 포토센서에 대한 DAS의 신호분석연구)

  • Hwang, InHo;Yoo, Sun Kook
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.237-242
    • /
    • 2016
  • The major advantage of slip-ring technology in Spiral CT is that it facilitates continuous rotation of the x-ray tube, so that volume data can be acquired from a patient quickly. Not only for such a fast scan, but also for the dose reduction purpose, high signal-to-noise ratio and fast data acquisition system is required. In this study, we have built a multi-channel photodetector and multi-channel data acquisition system for CT application. The detector module consisted of CdWO4 crystal and Si photodiode in 16 channels. For the performance test of the preamplifier stage, both the transimpedance and switched integrator types are optimized for the photodetector modules. Switched integrator showed better noise performance in the limited bandwidth which is suitable for the current CT application. The control sequence for data acquisition and 20 bit ADC is designed with VHDL(Very High Speed Integrated Circuit Hardware Description Language) and implemented on FPGA(Field Programmable Gate Array) chip. Our Si photodiode detector module coupled to CdWO4 crystal showed comparable signal with other commercially available photodiode for CT. Switched integrator type showed higher SNR but narrower bandwidth compared to transimpedance preamplifier. Digital hardware is designed by FPGA, so that the control signal could be redesigned without hardware alteration.

Spatio-Spectral Coherence Analysis of ERP signals for Attentional Visual Stimulus (시각 자극의 집중에 따른 뇌유발전위의 공간-주파수 상관 분석)

  • Lee, ByuckJin;Yoo, SunKook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.217-228
    • /
    • 2013
  • In this paper, the brain function in relation with human's visual attention was investigated by means of coherence and bicoherence methods. Throughout experimentation with attentional visual stimulus ERP (Event Related Potential) data and synthesized simulated data with different combinations of parameters, it is demonstrated that bicoherence and coherence can be useful to reveal the phase synchronies between different frequency bands at fixed scalp location, and between different scalp locations at fixed frequency band, respectively. Both methods are also affected by time interval from the onset, and the level of white noise added. The phase coupled relationships among ${\Theta}$, ${\delta}$, and ${\alpha}$ bands, and between frontal and central lobes were observed for attentional tasks, while those were little observable for inattentional tasks, which can show brain's functional spatio-spectral differences associated with human's attention.