• Title/Summary/Keyword: Coupled Model

Search Result 2,710, Processing Time 0.03 seconds

Sliding Mode Controller Applied to Coupled Inductor Dual Boost Inverters

  • Fang, Yu;Cao, Songyin;Wheeler, Pat
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1403-1412
    • /
    • 2019
  • A coupled inductor-dual boost-inverter (CIDBI) with a differential structure has been presented for application to a micro-inverter photovoltaic module system due to its turn ratio of a high-voltage level. However, it is difficult to design a CIDBI converter with a conventional PI regulator to be stable and achieve good dynamic performance, given the fact that it is a high order system. In view of this situation, a sliding mode control (SMC) strategy is introduced in this paper, and two different sliding mode controllers (SMCs) are proposed and adopted in the left and right side of two Boost sub-circuits to implement the corresponding regulation of the voltage and current. The schemes of the SMCs have been elaborated in this paper including the establishment of a system variable structure model, selection of the sliding surface, determination of the control law, and presentation of the reaching conditions and sliding domain. Finally, the mathematic analysis and the proposed SMC are verified by experimental results.

Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities

  • Fenjan, Raad M.;Ahmed, Ridha A.;Alasadi, Abbas A.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.247-257
    • /
    • 2019
  • Fee vibrational characteristics of porous steel double-coupled nanoplate system in thermo-elastic medium is studied via a refined plate model. Different pore dispersions called uniform, symmetric and asymmetric have been defined. Nonlocal strain gradient theory (NSGT) containing two scale parameters has been adopted to stablish size-dependent modeling of the system. Hamilton's principle has been adopted to stablish the governing equations. Obtained results from Galerkin's method are verified with those provided in the literature. The effects of nonlocal parameter, strain gradient, foundation parameters, porosity distributions and porosity coefficient on vibration frequencies of metal foam nanoscale plates have been examined.

Analytic equation to energy conversion between electromagnetically coupled superconducting and copper coils

  • An, Soobin;Choi, Kibum;Bang, Jeseok;Bong, Uijong;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.36-39
    • /
    • 2019
  • This paper presents an analytic method to calculate energy conversion between electromagnetically coupled high-temperature superconducting and copper coils. The energy transfer from one coil to the other is commonly observed during quench of a no-insulation (NI) high temperature superconductor (HTS) magnet. Proper understanding of this phenomenon is particularly important to protect an NI HTS magnet, especially to avoid any potential mechanical damages. In this paper, analytic equations are obtained to estimate the energy transfer between the NI and copper coils. The well-known lumped-parameter circuit model is adopted provided that key parameters of the coils are given.

Current status of an interacting dark sector with cosmological observations

  • Mifsud, Jurgen
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2019
  • The cosmic dark sector, composed of dark energy and dark matter, might be coupled, and hence mediate a fifth-force which gives rise to distinctive cosmological signatures. I will consider an interacting dark sector, in which dark energy and dark matter are coupled via specific well-motivated coupling functions. After an overview of these coupled dark energy models, I will discuss the current model parameter constraints derived from the latest cosmological observations which probe the expansion history, and the growth of cosmic structures of our Universe. Moreover, I will demonstrate how different measurements of the Hubble constant, including the GW170817 measurement, influence the inferred constraints on the dark coupling. I will further discuss how one could put tighter constraints on such a dark sector coupling with the upcoming large-scale radio surveys.

  • PDF

Modelling of Permeability Reduction of Soil Filters due to Clogging (흙 필터재의 폐색으로 인한 투수성 저하 모델 개발)

  • ;;Reddi, Lakshmi.N
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.271-278
    • /
    • 1999
  • Soil filters are commonly used to protect the soil structures from eroding and piping. When filters are clogged by fine particles which are progressively accumulated, these may lead to buildup of excessive pore pressures also leading to instability in subsurface infrastructure. A filter in the backfill of a retaining wall, a filter adjacent to the lining of a tunnel, or a filter in the bottom of an earth dam can be clogged by transported fine particles. This causes reduction in the permeability, which in turn may lead to intolerable decreases in their drainage capacity. In this thesis, the extent of this reduction is addressed using results from both experimental and theoretical investigations. In the experimental phase, the permeability reduction of a filter is monitored when an influent of constant concentration flows into the filter (uncoupled test), and when the water flow through the soil-filter system to simulate an in-situ condition (coupled test), respectively. The results of coupled and uncoupled test are compared with among others. In the theoretical phase of the investigation, a representative elemental volume of the soil filter was modeled as an ensemble of capillary tubes and the permeability reduction due to physical clogging was simulated using basic principles of flow in cylindrical tubes. In general, it was found that the permeability was reduced by at least one order of magnitude, and that the results from the uncoupled test and theoretical investigations were in good agreement. It is observed that the amount of deposited particles of the coupled test matches fairly well with that of the uncoupled test, which indicates that the prediction of permeability reduction is possible by preforming the uncoupled test instead of the coupled test, and/or by utilizing the theoretical model.

  • PDF

Development of a Numerical Simulator for Methane-hydrate Production (메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.67-75
    • /
    • 2014
  • Methane gas hydrate which is considered energy source for the next generation has an urgent need to develop reliable numerical simulator for coupled THM phenomena in the porous media, to minimize problems arising during the production and optimize production procedures. International collaborations to improve previous numerical codes are in progress, but they still have mismatch in the predicted value and unstable convergence. In this paper, FEM code for fully coupled THM phenomena is developed to analyze methane hydrate dissociation in the porous media. Coupled partial differential equations are derived from four mass balance equations (methane hydrate, soil, water, and hydrate gas), energy balance equation, and force equilibrium equation. Five main variables (displacement, gas saturation, fluid pressure, temperature, and hydrate saturation) are chosen to give higher numerical convergence through trial combinations of variables, and they can analyze the whole region of a phase change in hydrate bearing porous media. The kinetic model is used to predict dissociation of methane hydrate. Developed THM FEM code is applied to the comparative study on a Masuda's laboratory experiment for the hydrate production, and verified for the stability and convergence.

A Gap Coupled NRD-Guide Filter Designed with an Equivalent Circuir Model of Evanescent Waveguide (차단주파수 영역 도파관 등가회로 모델을 이용한 Gap-Coupled NRD Guide 대역통과 여파기의 설계)

  • 김소영;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.990-995
    • /
    • 2000
  • As the interest in the millimeter wave frequency (30 ~300 GHz) increases, Nonradiative Dielectric (NRD) guide is being more attractive due to its low loss characteristics. Most of millimeter wave components, which can be realized with waveguide, can also be realized with NRD guide since NRD guide has similar dispersion characteristics and field patterns to waveguide. Previously, Variational Method was applied to the gap discontinuity problem to design a gap-coupled NRD bandpass filter. In this paper, the design procedure was simplified by replacing the air gap region with an equivalent circuit model of an evanescent waveguide using the fact that the NRD guide has a similar structure with a dielectric-filled metal waveguide. Prior to applying this design method to the bandpass filter of millimeter wave frequency range, a bandpass filter of which center frequency is 10 GHz(3-Pole, 0.1 dB ripple, 2% fractional bandwidth) was designed and fabricated. The measured result agrees with one simulated with HFSS within an error range of a fabrication.

  • PDF

A Study on the Reverberation Characteristics of Coupled Spaces (음향적으로 결합된 공간의 잔향특성변화에 관한 연구)

  • Jeong, Dae-Up;Kim, Ji-Young;Choi, Young-Ji
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.53-63
    • /
    • 2008
  • In this study, the reverberation characteristics of coupled spaces were investigated using a scale model. Two rooms were connected through an acoustically transparent opening known as an aperture. The acoustic characteristics of the coupled room by varying three parameters, the aperture opening size, the absorption ratio between the two rooms and the locations of the secondary room, were measured and analysed. The results indicated that a reverberant secondary room, produced large variations of the acoustics in the main room and an absorptive secondary room was effective to provide systematic control of the acoustics in the main room. The reverberant secondary room should be located at the rear of the stage and the aperture opening ratio over 6.25% produced large variations of the acoustics in the main room. However, the aperture opening ratio over 25% had no effect on variations of the acoustics in the main room. The absorptive secondary room should be located at the rear of the audience areas and the aperture opening ratio over 3.13% produced large variations of the acoustics in the main room.

  • PDF

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

Parametric Study of Numerical Prediction of Slamming and Whipping and an Experimental Validation for a 10,000-TEU Containership

  • Kim, Jung-Hyun;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.115-133
    • /
    • 2015
  • This paper describes an approach for the numerical analysis of container ship slamming and whipping and various parameters that influence slamming and whipping. For validation purposes, the numerical analysis results were compared with experimental results obtained as part of the Wave-Induced Loads on Ships Joint Industry Project. Water entry problems for two-dimensional (2D) sections were first solved using a 2D generalized Wagner model (GWM) for various drop conditions and geometries. As the next step, the hydroelastic numerical analysis of a 10,000-TEU container ship subjected to slamming and whipping loads in waves was performed. The analysis method used is based on a fully coupled model consisting of a three-dimensional (3D) Rankine panel model, a 3D finite element model (FEM), and a 2D GWM, which are strongly coupled in the time domain. Parametric studies were carried out in both numerical and experimental tests with various forward speeds, wave heights, and wave periods. The trends observed and the validity of the numerical analysis results are discussed.