DOI QR코드

DOI QR Code

Analytic equation to energy conversion between electromagnetically coupled superconducting and copper coils

  • An, Soobin (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Choi, Kibum (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Bang, Jeseok (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Bong, Uijong (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Hahn, Seungyong (Department of Electrical and Computer Engineering, Seoul National University)
  • Received : 2019.02.15
  • Accepted : 2019.03.28
  • Published : 2019.03.31

Abstract

This paper presents an analytic method to calculate energy conversion between electromagnetically coupled high-temperature superconducting and copper coils. The energy transfer from one coil to the other is commonly observed during quench of a no-insulation (NI) high temperature superconductor (HTS) magnet. Proper understanding of this phenomenon is particularly important to protect an NI HTS magnet, especially to avoid any potential mechanical damages. In this paper, analytic equations are obtained to estimate the energy transfer between the NI and copper coils. The well-known lumped-parameter circuit model is adopted provided that key parameters of the coils are given.

Keywords

CJJOCB_2019_v21n1_36_f0001.png 이미지

Fig. 1. (a) Electric circuit of NI HTS coil with electromagnetically coupled coil using lumped parameter circuit model and (b) disconnecting current source after quench detection.

TABLE I COIL PARAMETERS.

CJJOCB_2019_v21n1_36_t0001.png 이미지

References

  1. S. Hahn, D. K. Park, J. Bascunan, and Y. Iwasa, "HTS pancake coils without turn-to-turn insulation," IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1592-1595, 2011. https://doi.org/10.1109/TASC.2010.2093492
  2. S. Hahn, Y. Kim, D. Keun Park, K. Kim, J. P. Voccio, J. Bascunan, and Y. Iwasa, "No-insulation multi-width winding technique for high temperature superconducting magnet," Appl. Phys. Lett., vol. 103, no. 17, p. 173511, 2013. https://doi.org/10.1063/1.4826217
  3. J. Kim, S. Yoon, K. Cheon, K. H. Shin, S. Hahn, D. L. Kim, S. Lee, H. Lee, and S.-H. Moon, "Effect of resistive metal cladding of HTS tape on the characteristic of no-insulation coil," IEEE Trans. Appl. Supercond., vol. 26, no. 4, p. 4601906, 2016.
  4. Y. J. Hwang, J. Y. Jang, S. Song, J. M. Kim, and S. Lee, "Feasibility study of the impregnation of a no-insulation HTS coil using an electri- cally conductive epoxy," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 4603405, 2017.
  5. S. Hahn, Y. Kim, J. Ling, J. Voccio, D. K. Park, J. Bascunan, H.-J. Shin, H. Lee, and Y. Iwasa, "No-insulation coil under time-varying condition: Magnetic coupling with external coil," IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 4601705, 2013. https://doi.org/10.1109/TASC.2013.2240756
  6. D. Uglietti, R. Wesche, and P. Bruzzone, "Construction and test of a non-insulated insert coil using coated conductor tape," J. Phys.: Conf. Ser., vol. 507, no. 3, p. 032052, 2014.
  7. T. Lecrevisse and Y. Iwasa, "A (RE) BCO pancake winding with metal- as-insulation," IEEE Trans. Appl. Supercond., vol. 26, no. 3, p. 4700405, 2016.
  8. Y. Choi, K. Kim, O. Kwon, D. Kang, J. Kang, T. Ko, and H. Lee, "The effects of partial insulation winding on the charge-discharge rate and magnetic field loss phenomena of GdBCO coated conductor coils," Supercond. Sci. Technol., vol. 25, no. 10, p. 105001, 2012. https://doi.org/10.1088/0953-2048/25/10/105001
  9. S. Hahn, Y. Kim, J. Song, J. Voccio, J. Ling, J. Bascunan, and Y. Iwasa, "A 78-mm/7-T multi-width no-insulation ReBCO magnet: Key concept and magnet design," IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 4602705, 2014.
  10. J. Bascunan, S. Hahn, T. Lecrevisse, J. Song, D. Miyagi, and Y. Iwasa, "An 800-MHz all-REBCO insert for the 1.3-GHz LTS/HTS NMR magnet program-a progress report," IEEE Trans. Appl. Supercond., vol. 26, no. 4, p. 4300205, 2016.
  11. J. Liu, Y. Dai, and L. Li, "Progress in the development of a 25 T all superconducting NMR magnet," Cryogenics, vol. 79, pp. 79-84, 2016. https://doi.org/10.1016/j.cryogenics.2016.08.007
  12. S. Hahn, D. K. Park, J. Voccio, J. Bascunan, and Y. Iwasa, "No-Insulation (NI) HTS inserts for >1 GHz LTS/HTS NMR magnets," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4302405, 2012. https://doi.org/10.1109/TASC.2011.2178976
  13. J. Choi, S. Kim, S. Kim, K. Sim, M. Park, and I. Yu, "Characteristic analysis of a sample HTS magnet for design of a 300 kW HTS DC induction furnace," IEEE Trans. Appl. Supercond., vol. 26, no. 3, p. 3700405, 2016.
  14. S. Hahn, J. Song, Y. Kim, T. Lecrevisse, Y. Chu, J. Voccio, J. Bascunan, and Y. Iwasa, "Construction and test of 7-T/68-mm cold-bore multiwidth no-insulation GdBCO magnet," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 4600405, 2015.
  15. S. Yoon, J. Kim, K. Cheon, H. Lee, S. Hahn, and S.-H. Moon, "26 T 35 mm all-$GdBa_2Cu_3O_{7-x}$ multi-width no-insulation superconducting magnet," Supercond. Sci. Technol., vol. 29, no. 4, p. 04LT04, 2016. https://doi.org/10.1088/0953-2048/29/4/04LT04
  16. J. J. Scheidler and T. F. Tallerico, "Design, fabrication, and critical current testing of no-insulation superconducting rotor coils for NASA's 1.4 MW high-efficiency megawatt motor," in 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Jul. 2018, pp. 1-9
  17. J. Bascunan, P. Michael, S. Hahn, T. Lecrevisse, and Y. Iwasa, "Con- struction and test results of coil 2 of a three-coil 800-MHz REBCO insert for the 1.3-ghz high-resolution NMR magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 1-4, Jun. 2017.
  18. D. Park, J. Bascunan, P. C. Michael, J. Lee, S. Hahn, and Y. Iwasa, "Construction and test results of coils 2 and 3 of a 3-nested-coil 800-MHz REBCO insert for the mit 1.3-GHz LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1-5, Apr. 2018.
  19. K. L. Kim, S. Yoon, K. Cheon, J. Kim, H. Lee, S. Lee, D. L. Kim, and S.Hahn, "400-MHz/60-mm All-REBCO nuclear magnetic resonance magnet: Magnet design," IEEE Trans. Appl. Supercond., vol. 26, no. 4, p. 4302604, 2016.
  20. T. Qu, P. C. Michael, J. Bascunan, T. Lecrevisse, M. Guan, S. Hahn, and Y. Iwasa, "Test of an 8.66-T REBCO insert coil with overbanding radial build for a 1.3-GHz LTS/HTS NMR magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 4600605, 2017.
  21. J. Y. Jang, S. Yoon, S. Hahn, Y. J. Hwang, J. Kim, K. H. Shin, K. Cheon, K. Kim, S. In, Y.-J. Hong et al., "Design, construction and 13 K conduction-cooled operation of a 3 T 100 mm stainless steel cladding all- REBCO magnet," Supercond. Sci. Technol., vol. 30, no. 10, p. 105012, 2017. https://doi.org/10.1088/1361-6668/aa8354
  22. J. B. Song and S. Y. Hahn, ""Leak Current" correction for critical current measurement of no-insulation HTS coil," Prog. Supercond. Cryogenics, vol. 19, no. 2, pp. 48-52, 2017. https://doi.org/10.9714/psac.2017.19.2.048
  23. Y. Yanagisawa, K. Sato, K. Yanagisawa, H. Nakagome, X. Jin, M. Taka- hashi, and H. Maeda, "Basic mechanism of self-healing from thermal runaway for uninsulated REBCO pancake coils," Physica C, vol. 499, pp. 40-44, 2014. https://doi.org/10.1016/j.physc.2014.02.002
  24. Y. Wang, H. Song, D. Xu, Z. Li, Z. Jin, and Z. Hong, "An equivalent circuit grid model for no-insulation HTS pancake coils," Supercond. Sci. Technol., vol. 28, no. 4, p. 045017, 2015. https://doi.org/10.1088/0953-2048/28/4/045017
  25. T. Wang, S. Noguchi, X. Wang, I. Arakawa, K. Minami, K. Monma, Ishiyama, S. Hahn, and Y. Iwasa, "Analyses of transient behaviors of no-insulation REBCO pancake coils during sudden discharging and overcurrent," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 4603409, 2015.
  26. Y. Wang, W. K. Chan, and J. Schwartz, "Self-protection mechanisms in no-insulation $(RE)Ba_2Cu_3O_x$ high temperature superconductor pancake coils," Supercond. Sci. Technol., vol. 29, no. 4, p. 045007, 2016. https://doi.org/10.1088/0953-2048/29/4/045007
  27. A. Ikeda, T. Oki, T. Wang, A. Ishiyama, K. Monma, S. Noguchi, T. Watanabe, and S. Nagaya, "Transient behaviors of no-insulation REBCO pancake coil during local normal-state transition," IEEE Trans. Appl. Supercond., vol. 26, no. 4, p. 4600204, 2016.
  28. W. D. Markiewicz, J. J. Jaroszynski, D. V. Abraimov, R. E. Joyner, and Khan, "Quench analysis of pancake wound REBCO coils with low resistance between turns," Supercond. Sci. Technol., vol. 29, no. 2, p. 025001, 2015. https://doi.org/10.1088/0953-2048/29/2/025001
  29. H. Song and Y. Wang, "Simulations of nonuniform behaviors of multiple No-insulation $(RE)Ba_2Cu_3O_{7-x}$ HTS pancake coils during charging and discharging," IEEE Trans. Appl. Supercond., vol. 26, no. 4, p. 4700105, 2016.
  30. K. R. Bhattarai, K. Kim, S. Kim, S. Lee, and S. Hahn, "Quench analysis of a multiwidth no-insulation 7-T 78-mm REBCO magnet," IEEE Trans. Appl. Supercond., vol. 27, no. 4, p. 4603505, 2017.
  31. S. Noguchi, K. Kim, and S. Hahn, "Simulation on electrical field generation by hall effect in no-insulation REBCO pancake coils," IEEE Trans. Appl. Supercond., vol. 28, no. 3, p. 4901805, 2018.
  32. J. Lu, J. Levitan, D. McRae, and R. P. Walsh, "Contact resistance between two REBCO tapes: the effects of cyclic loading and surface coating," Supercond. Sci. Technol., vol. 31, no. 8, p. 085006, 2018. https://doi.org/10.1088/1361-6668/aacd2d
  33. K. Kim, K. R. Bhattarai, J. Y. Jang, Y. J. Hwang, K. Kim, S. Yoon, S. Lee, and S. Hahn, "Design and performance estimation of a 35 T 40 mm no-insulation all-REBCO user magnet," Supercond. Sci. Technol., vol. 30, no. 6, p. 065008, 2017. https://doi.org/10.1088/1361-6668/aa6677
  34. X. Wang, S. Hahn, Y. Kim, J. Bascunan, J. Voccio, H. Lee, and Y. Iwasa, "Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil," Supercond. Sci. Technol., vol. 26, no. 3, p. 035012, 2013. https://doi.org/10.1088/0953-2048/26/3/035012