• Title/Summary/Keyword: Coupled Line

Search Result 723, Processing Time 0.025 seconds

Broadband Patch Antenna for Wireless LAN Communication of 5GHz Band (5GHz 대역의 무선랜 통신을 위한 광대역 패치 안테나)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.395-400
    • /
    • 2021
  • In this paper, the wideband patch antenna is simulated and manufactured for the wireless LAN of 5GHz band that is defined in IEEE 802.11a. In the 802.11a, 200 channels of 675MHz are defined. Therefore, the bandwidth is needed more than 12.3%. For the wideband characteristics, low dielectric constant is realized with the multi-layer of 2 teflon substrates and the air dielectric layer and the feeding method of the coupled-line is used. Optimized wideband patch antenna is simulated with the return loss of 38.99dB at the center frequency of 5.43GHz and the bandwidth of 12.9%. The gain of manufactured patch antenna is 4.38, 4.52, and 5.12dBi at the channel number of 46, 56, and 153, respectively.

Comparative analysis of commonly used peak calling programs for ChIP-Seq analysis

  • Jeon, Hyeongrin;Lee, Hyunji;Kang, Byunghee;Jang, Insoon;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.42.1-42.9
    • /
    • 2020
  • Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) is a powerful technology to profile the location of proteins of interest on a whole-genome scale. To identify the enrichment location of proteins, many programs and algorithms have been proposed. However, none of the commonly used peak calling programs could accurately explain the binding features of target proteins detected by ChIP-Seq. Here, publicly available data on 12 histone modifications, including H3K4ac/me1/me2/me3, H3K9ac/me3, H3K27ac/me3, H3K36me3, H3K56ac, and H3K79me1/me2, generated from a human embryonic stem cell line (H1), were profiled with five peak callers (CisGenome, MACS1, MACS2, PeakSeq, and SISSRs). The performance of the peak calling programs was compared in terms of reproducibility between replicates, examination of enriched regions to variable sequencing depths, the specificity-to-noise signal, and sensitivity of peak prediction. There were no major differences among peak callers when analyzing point source histone modifications. The peak calling results from histone modifications with low fidelity, such as H3K4ac, H3K56ac, and H3K79me1/me2, showed low performance in all parameters, which indicates that their peak positions might not be located accurately. Our comparative results could provide a helpful guide to choose a suitable peak calling program for specific histone modifications.

Nacl Aqueous Solution Concentration Detection Using Slot-Coupled Capacitor Resonator (슬롯결합 커패시터 공진기를 이용한 Nacl 수용액 농도 검출)

  • Yun, Gi-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.29-35
    • /
    • 2018
  • In this paper, we proposed a high sensitivity sensor that can detect the concentration change of Nacl aqueous solutions by using a slot coupling capacitor resonator in sub-microwave band. The resonator applied to the sensor consists of a parallel plate capacitor connected to an inductive slot utilizing the ground plane of the microstrip line. Based on the measurement data of the dielectric characteristics according to the concentration change, the resonance frequency was determined in the UHF band where the concentration change is evident and the Nacl aqueous solution is inserted into the capacitor. Based on the simulation, the proposed resonator was designed and fabricated. The concentration level was varied from 0 to 400 mg/dl as 100 mg/dl step, and the transmission scattering coefficient ($S_{21}$) was successfully measured. Experimental results show that it is applicable to the concentration detection sensor in Nacl aqueous solution by obtaining minimum 1.8 dB($S_{21}$) at each step.

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Power control of CiADS core with the intensity of the proton beam

  • Yin, Kai;Ma, Wenjing;Cui, Wenjuan;He, Zhiyong;Li, Xinxin;Dang, Shiwu;Yang, Feng;Guo, Yuhui;Duan, Limin;Li, Meng;Hou, Yikai
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1253-1260
    • /
    • 2022
  • This paper reports the control method for the core power of the China initiative Accelerator Driven System (CiADS) facility. In the CiADS facility, an intense external neutron source provided by a proton accelerator coupled to a spallation target is used to drive a sub-critical reactor. Without any control rod inside the sub-critical reactor, the core power is controlled by adjusting the proton beam intensity. In order to continuously change the beam intensity, an adjustable aperture is considered to be used at the Low Energy Beam Transport (LEBT) line of the accelerator. The aperture size is adjusted based on the Proportional Integral Derivative (PID) controllers, by comparing either the setting beam intensity or the setting core power with the measured value. To evaluate the proposed control method, a CiADS core model is built based on the point reactor kinetics model with six delayed neutron groups. The simulations based on the CiADS core model have indicated that the core power can be controlled stably by adjusting the aperture size. The response time in the adjustment of the core power depends mainly on the adjustment time of the beam intensity.

A Study on Implementation and Performance of the Power Control High Power Amplifier for Satellite Mobile Communication System (위성통신용 전력제어 고출력증폭기의 구현 및 성능평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • In this paper, the 3-mode variable gain high power amplifier for a transmitter of INMARSAT-B operating at L-band(1626.5-1646.5 MHz) was developed. This SSPA can amplify 42 dBm in high power mode, 38 dBm in medium power mode and 36 dBm in low power mode for INMARSAT-B. The allowable errol sets +1 dBm as the upper limit and -2 dBm as the lower limit, respectively. To simplify the fabrication process, the whole system is designed by two parts composed of a driving amplifier and a high power amplifier. The HP's MGA-64135 and Motorola's MRF-6401 were used for driving amplifier, and the ERICSSON's PTE-10114 and PTF-10021 for the high power amplifier. The SSPA was fabricated by the RP circuits, the temperature compensation circuits and 3-mode variable gain control circuits and 20 dB parallel coupled-line directional coupler in aluminum housing. In addition, the gain control method was proposed by digital attenuator for 3-mode amplifier. Then il has been experimentally verified that the gain is controlled for single tone signal as well as two tone signals. In this case, the SSPA detects the output power by 20 dB parallel coupled-line directional coupler and phase non-splitter amplifier. The realized SSPA has 41.6 dB, 37.6 dB and 33.2 dB for small signal gain within 20 MHz bandwidth, and the VSWR of input and output port is less than 1.3:1. The minimum value of the 1 dB compression point gets more than 12 dBm for 3-mode variable gain high power amplifier. A typical two tone intermodulation point has 36.5 dBc maximum which is single carrier backed off 3 dB from 1 dB compression point. The maximum output power of 43 dBm was achieved at the 1636.5 MHz. These results reveal a high power of 20 Watt, which was the design target.

  • PDF

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT (SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가)

  • Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.337-346
    • /
    • 2010
  • Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.

A study on hydraulic back analysis for an urban tunnel site and stability analysis based on hydro-mechanical coupling analysis (도심지 터널 용출수 발생구간에서의 수리 역해석 및 수리-역학 연계해석을 통한 안정성 해석 연구)

  • Park, Inn-Joon;Song, Myung-Gyu;Shin, Uyu-Soung;Park, Yong-Su
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.397-404
    • /
    • 2008
  • Excessive amount of groundwater flowed into tunnel, while constructing Incheon international airport railway. Tunnel passes under subway line no. 2 with only 1.76 m below. To protect the existing structure, TRcM excavation method was applied. As station and construction shaft are already constructed, which are located back and forth of TRcM section, 86.4 ton per day of groundwater inflow is against expectation. To identify mechanism of excessive water inflow, hydraulic back analyses were performed. Then, hydro-mechanical coupled analysis were also performed with the hydrogeologic parameters identified, whose results are investigated for checking the stability of adjacent structures to the tunnel under construction. And a number of mechanical analyses were also performed to check the hydro-mechanical coupling effect. The result from the mechanical analysis shows that subsidence and tunnel ceiling displacement will be 0.85 mm and 1.32 mm. The result of hydro-mechanical couple analysis shows that subsidence and maximum tunnel ceiling displacement will be 1.2 mm and 1.72 mm. Additional displacements caused by groundwater draw down were identified, however, displacement is minute.

  • PDF

Development of the Korean Practice Parameter for Adult Attention-Deficit/Hyperactivity Disorder

  • Bahn, Geon Ho;Lee, Young Sik;Yoo, Hanik K.;Kim, Eui-Jung;Park, Subin;Han, Doug Hyun;Hong, Minha;Kim, Bongseog;Lee, Soyoung Irene;Bhang, Soo Young;Lee, Seung Yup;Hong, Jin Pyo;Joung, Yoo-Sook
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.31 no.1
    • /
    • pp.5-25
    • /
    • 2020
  • Objectives: Adult attention-deficit/hyperactivity disorder (ADHD) is an important mental health problem that needs resolution, especially considering the high rates of ADHD continuation from childhood to adolescence/adulthood and the high prevalence of ADHD in adults. Adults with ADHD have lifelong negative impacts and require close monitoring with long-term follow-up. Hence, the establishment of a Korean practice parameter for adult ADHD is necessary to minimize discontinuation of treatment and enable information sharing among Korean mental health professionals. Methods: The Korean practice parameter was developed using an evidence-based approach consisting of expert consensus survey coupled with literature review. Results: According to the expert consensus survey, the most commonly used diagnostic methods were clinical psychiatric interview (20.66%) and self-report scales (19.25%) followed by attention (14.71%) and psychological tests (14.24%). Key evaluation instruments currently available in Korea are the World Health Organization Adult ADHD Self-Report Rating Scale, Korean Adult ADHD Rating Scale, Diagnostic Interview for ADHD in Adults, Barkley Deficits in Executive Functioning Scale for adults, Comprehensive Attention Test, Conners' Continuous Performance Test, and the subtests of Wechsler Adult Intelligence Scale, Digit Span and Letter-Number Sequencing. Although pharmacotherapy is recommended as the first-line of treatment for adult ADHD, we recommend that it be followed by a multimodal and multidisciplinary approach including psychoeducation, pharmacotherapy, cognitive behavior therapy and coaching. Conclusion: The Korean practice parameter introduces not only general information for the diagnosis and treatment of adult ADHD on a global scale, but also the process of diagnosis and treatment options tailored to the Korean population.