• 제목/요약/키워드: Coupled Lateral-torsional Vibration

검색결과 26건 처리시간 0.02초

System identification of the suspension tower of Runyang Bridge based on ambient vibration tests

  • Li, Zhijun;Feng, Dongming;Feng, Maria Q.;Xu, Xiuli
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.523-538
    • /
    • 2017
  • A series of field vibration tests are conducted on the Runyang Suspension Bridge during both the construction and operational stages. The purpose of this study is devoted to the analysis of the dynamic characteristics of the suspension tower. After the tower was erected, an array of accelerometers was deployed to study the evolution of its modal parameters during the construction process. Dynamic tests were first performed under the freestanding tower condition and then under the tower-cable condition after the superstructure was installed. Based on the identified modal parameters, the effect of the pile-soil-structure interaction on dynamic characteristics of the suspension tower is investigated. Moreover, the stiffness of the pile foundation is successfully identified using a probabilistic finite model updating method. Furthermore, challenges of identifying the dynamic properties of the tower from the coupled responses of the tower-cable system are discussed in detail. It's found that compared with the identified results from the freestanding tower, the longitudinal and torsional natural frequencies of the tower in the tower-cable system have changed significantly, while the lateral mode frequencies change slightly. The identified modal results from measurements by the structural health monitoring system further confirmed that the vibrations of the bridge subsystems (i.e., the tower, the suspended deck and the main cable) are strongly coupled with one another.

기어-시스템의 동특성에 대한 연구 (A Study on Dynamic Characteristics of Gear-System)

  • 이형우;박노길
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.

Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers

  • Shum, K.M.;Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • 제9권4호
    • /
    • pp.271-296
    • /
    • 2006
  • The frequency of a traditional tuned liquid column damper (TLCD) depends solely on the length of liquid column, which imposes certain restrictions on its application to long span cable-stayed bridges during construction. The configuration of a cable-stayed bridge varies from different construction stages and so do its natural frequencies. It is thus difficult to apply TLCD with a fixed configuration to the bridge during construction or it is not economical to design a series of TLCD with different liquid lengths to suit for various construction stages. Semi-active tuned liquid column damper (SATLCD) with adaptive frequency tuning capacity is studied in this paper for buffeting response control of a long span cable-stayed bridge during construction. The frequency of SATLCD can be adjusted by active control of air pressures inside the air chamber at the two ends of the container. The performance of SATLCD for suppressing combined lateral and torsional vibration of a real long span cable-stayed bridge during construction stage is numerically investigated using a finite element-based approach. The finite element model of SATLCD is also developed and incorporated into the finite element model of the bridge for predicting buffeting response of the coupled SATLCD-bridge system in the time domain. The investigations show that with a fixed container configuration, the SATLCD with adaptive frequency tuning can effectively reduce buffeting response of the bridge during various construction stages.

횡방향 새그를 가진 자정식 현수교의 공탄성 거동(II) - 주탑의 거동을 중심으로 - (Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(II) - Focused on the Behavior of Tower -)

  • 권순덕;장승필
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.269-275
    • /
    • 1997
  • 본 연구에서는 자정식 현수교 주탑의 내풍 안정성을 보기 위하여 주탑 모형 실험과 전교 모형 실험을 수행하고 그 결과를 분석하였다. 경사진 병렬 탑주를 가진 주탑의 경우에는 다양한 주파수대의 웨이크가 존재하므로 넓은 풍속대에서 진동이 발생한다는 사실을 확인하였다. 자정식 현수교의 경우에는 주형의 교축방향 지지조건에 따라 주탑 진동 모드가 매우 민감하게 변화하였다. 본 연구 대상 주탑은 면외 휨 모드와 비틈 모드의 고유진동수가 매우 근접해 있어서 넓은 범위의 풍속에서 연성진동이 발생하였다 주탑 진동을 완화하기 위한 공기역학적 수단으로 모서리 자르기를 시도하였는데, 탑주의 폭과 잘린 모서리의 비가 1/10일 때가 가장 효과적이었다.

  • PDF

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.