• 제목/요약/키워드: Coupled Differential Equations

검색결과 257건 처리시간 0.031초

Vibration analysis of a Timoshenko beam carrying 3D tip mass by using differential transform method

  • Kati, Hilal Doganay;Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.381-388
    • /
    • 2018
  • Dynamic behaviour of beam carrying masses has attracted attention of many researchers and engineers. Many studies on the analytical solution of beam with concentric tip mass have been published. However, there are limited works on vibration analysis of beam with an eccentric three dimensional object. In this case, bending and torsional deformations of beam are coupled due to the boundary conditions. Analytical solution of equations of motion of the system is complicated and lengthy. Therefore, in this study, Differential Transform Method (DTM) is applied to solve the relevant equations. First, the Timoshenko beam with 3D tip attachment whose centre of gravity is not coincident with beam end point is considered. The beam is assumed to undergo bending in two orthogonal planes and torsional deformation about beam axis. Using Hamilton's principle the equations of motion of the system along with the possible boundary conditions are derived. Later DTM is applied to obtain natural frequencies and mode shapes of the system. According to the relevant literature DTM has not been applied to such a system so far. Moreover, the problem is modelled by Ansys, the well-known finite element method, and impact test is applied to extract experimental modal data. Comparing DTM results with finite element and experimental results it is concluded that the proposed approach produces accurate results.

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

난류 균일전단유동에 대한 레이놀즈 응력 모형방정식의 평형해와 안정성 해석 (The Equilibrium Solution and the Stability Analysis of Reynolds Stress Equations for a Homogeneous Turbulent Shear Flow)

  • 이원근;정명균
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.820-833
    • /
    • 1995
  • An analysis is performed to examine the equilibrium state and the stability of modeled Reynolds stress equations for homogeneous turbulent shear flows. The system of the governing equations consists of four coupled ordinary differential equations. The equilibrium states are found by the steady state solution of the governing equations. In order to investigate the stability of the system about its state in equilibrium, and eigenvalue problem is constructed. As a result, constraints for the coeffieients in the model equations are obtained by the stability condition of the equilibrium state as well as by their physically realizable bounds. It is observed that the models with pressure-strain rate correlation that are linear in the anisotropy tensor are stable and produce reasonable equilibrium tensor do not behave properly. Stability considerations about three most commonly used models are given in detail in the final section.

Nonlinear stability and bifurcations of an axially accelerating beam with an intermediate spring-support

  • Ghayesh, Mergen H.;Amabili, Marco
    • Coupled systems mechanics
    • /
    • 제2권2호
    • /
    • pp.159-174
    • /
    • 2013
  • The present work aims at investigating the nonlinear dynamics, bifurcations, and stability of an axially accelerating beam with an intermediate spring-support. The problem of a parametrically excited system is addressed for the gyroscopic system. A geometric nonlinearity due to mid-plane stretching is considered and Hamilton's principle is employed to derive the nonlinear equation of motion. The equation is then reduced into a set of nonlinear ordinary differential equations with coupled terms via Galerkin's method. For the system in the sub-critical speed regime, the pseudo-arclength continuation technique is employed to plot the frequency-response curves. The results are presented for the system with and without a three-to-one internal resonance between the first two transverse modes. Also, the global dynamics of the system is investigated using direct time integration of the discretized equations. The mean axial speed and the amplitude of speed variations are varied as the bifurcation parameters and the bifurcation diagrams of Poincare maps are constructed.

PARAMETER-UNIFORM NUMERICAL METHOD FOR A SYSTEM OF COUPLED SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS WITH MIXED TYPE BOUNDARY CONDITIONS

  • Tamilselvan, A.;Ramanujam, N.;Priyadharshini, R. Mythili;Valanarasu, T.
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.109-130
    • /
    • 2010
  • In this paper, a numerical method for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with the mixed type boundary conditions is presented. Parameter-uniform error bounds for the numerical solution and also to numerical derivative are established. Numerical results are provided to illustrate the theoretical results.

Free vibration of a steel-concrete composite beam with coupled longitudinal and bending motions

  • Li, Jun;Jiang, Li;Li, Xiaobin
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.79-91
    • /
    • 2017
  • Free vibrations of steel-concrete composite beams are analyzed by using the dynamic stiffness approach. The coupled equations of motion of the composite beams are derived with help of the Hamilton's principle. The effects of the shear deformation and rotary inertia of the two beams as well as the transverse and axial deformations of the stud connectors are included in the formulation. The dynamic stiffness matrix is developed on the basis of the exact general solutions of the homogeneous governing differential equations of the composite beams. The use of the dynamic stiffness method to determine the natural frequencies and mode shapes of a particular steel-concrete composite beam with various boundary conditions is demonstrated. The accuracy and effectiveness of the present model and formulation are validated by comparison of the present results with the available solutions in literature.

Vehicle/bridge interactions of a rail suspension bridge considering support movements

  • Yau, J.D.
    • Interaction and multiscale mechanics
    • /
    • 제2권3호
    • /
    • pp.263-276
    • /
    • 2009
  • This paper is intended to investigate interaction response of a train running over a suspension bridge undergoing support settlements. The suspension bridge is modeled as a single-span suspended beam with hinged ends and the train as successive moving oscillators with identical properties. To conduct this dynamic problem with non-homogeneous boundary conditions, this study first divides the total response of the suspended beam into two parts: the static and dynamic responses. Then, the coupled equations of motion for the suspended beam carrying multiple moving oscillators are transformed into a set of nonlinearly coupled generalized equations by Galerkin's method, and solved using the Newmark method with an incremental-iterative procedure including the three phases: predictor, corrector, and equilibrium-checking. Numerical investigations demonstrate that the present iterative technique is available in dealing with the dynamic interaction problem of vehicle/bridge coupling system and that the differential movements of bridge supports will significantly affect the dynamic response of the running vehicles but insignificant influence on the bridge response.

탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법 (Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations)

  • 김남일;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

Dirac Phenomenological Analyses of 1.047-GeV Proton Inelastic Scatterings from 62Ni and 64Ni

  • Shim, Sugie
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1631-1636
    • /
    • 2018
  • Unpolarized 1.047-GeV proton inelastic scatterings from the Ni isotopes $^{62}Ni$ and $^{64}Ni$ are analyzed phenomenologically employing an optical potential model and the first-order collective model in the relativistic Dirac coupled channel formalism. The Dirac equations are reduced to $Schr{\ddot{o}}dinger-like$ second-order differential equations, and the effective central and spin-orbit optical potentials are analyzed by considering the mass-number dependence. The multistep excitation via the $2^+$ state is found to be important for the $4^+$ state excitation in the ground state rotational band for proton inelastic scatterings from the Ni isotopes. The calculated deformation parameters for the $2^+$ and the $4^+$ states of the ground state rotational band and for the first $3^-$ state are found to agree pretty well with those obtained from nonrelativistic calculations.