• Title/Summary/Keyword: Coupled Code

Search Result 404, Processing Time 0.025 seconds

Transient full core analysis of PWR with multi-scale and multi-physics approach

  • Jae Ryong Lee;Han Young Yoon;Ju Yeop Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.980-992
    • /
    • 2024
  • Steam line break accident (SLB) in the nuclear reactor is one of the representative Non-LOCA accidents in which thermal-hydraulics and neutron kinetics are strongly coupled each other. Thus, the multi-scale and multi-physics approach is applied in this study in order to examine a realistic safety margin. An entire reactor coolant system is modelled by system scale node, whereas sub-channel scale resolution is applied for the region of interest such as the reactor core. Fuel performance code is extended to consider full core pin-wise fuel behaviour. The MARU platform is developed for easy integration of the codes to be coupled. An initial stage of the steam line break accident is simulated on the MARU platform. As cold coolant is injected from the cold leg into the reactor pressure vessel, the power increases due to the moderator feedback. Three-dimensional coolant and fuel behaviour are qualitatively visualized for easy comprehension. Moreover, quantitative investigation is added by focusing on the enhancement of safety margin by means of comparing the minimum departure from nucleate boiling ratio (MDNBR). Three factors contributing to the increase of the MDNBR are proposed: Various geometric parameters, realistic power distribution by neutron kinetics code, Radial coolant mixing including sub-channel physics model.

A coupled geomechanical reservoir simulation analysis of CO2 - EOR: A case study

  • Elyasi, Ayub;Goshtasbi, Kamran;Hashemolhosseini, Hamid
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.423-436
    • /
    • 2016
  • Currently, there is a great interest in the coupling between multiphase fluid flow and geomechanical effects in hydrocarbon reservoirs and surrounding rocks. The ideal solution for this coupled problem is to introduce the geomechanical effects through the stress analysis solution and implement an algorithm, which assures that the equations governing the flow and stress analyses are obeyed in each time step. This paper deals with the implementation of a program (FORTRAN90 interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators, using a partial coupling algorithm. The explicit coupled hydro-mechanical behavior of Iranian field during depletion and $CO_2$ injection is studied using the soils consolidation procedure available in ABAQUS. Time dependent reservoir pressure fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS. The FEM analysis of the reservoir showed no sign of plastic strain under production and $CO_2$ injection scenarios in any part of the reservoir and the stress paths do not show a critical behavior.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.

Fluid-Oscillation Coupled Analysis for HAWT Rotor Blade (One Degree of Freedom Weak Coupling Analysis with Hinge-Spring Model)

  • Imamura, Hiroshi;Hasegawa, Yutaka;Murata, Junsuke;Chihara, Sho;Takezaki, Daisuke;Kamiya, Naotsugu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.197-205
    • /
    • 2009
  • Since large-scale commercial wind turbine generator systems such as MW-class wind turbines are becoming widely operated, the vibration and distortion of the blade are becoming larger and larger. Therefore the soft structure design instead of the solid-design is one of the important concepts to reduce the structural load and the cost of the wind turbine rotors. The objectives of the study are development of the fluid-structure coupled analysis code and evaluation of soft rotor-blade design to reduce the unsteady structural blade load. In this paper, fluid-structure coupled analysis for the HAWT rotor blade is performed by free wake panel method coupled with hinge-spring blade model for the flapwise blade motion. In the model, the continuous deflection of the rotor blade is represented by flapping angle of the hinge with one degree of freedom. The calculation results are evaluated by comparison with the database of the NREL unsteady aerodynamic experiment. In the analysis the unsteady flapwise moments in yawed inflow conditions are compared for the blades with different flapwise eigen frequencies.

ACCURACY AND EFFICIENCY OF A COUPLED NEUTRONICS AND THERMAL HYDRAULICS MODEL

  • Pope, Michael A.;Mousseau, Vincent A.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.885-892
    • /
    • 2009
  • This manuscript will discuss a numerical method where the six equations of two-phase flow, the solid heat conduction equations, and the two equations that describe neutron diffusion and precursor concentration are solved together in a tightly coupled, nonlinear fashion for a simplified model of a nuclear reactor core. This approach has two important advantages. The first advantage is a higher level of accuracy. Because the equations are solved together in a single nonlinear system, the solution is more accurate than the traditional "operator split" approach where the two-phase flow equations are solved first, the heat conduction is solved second and the neutron diffusion is solved third, limiting the temporal accuracy to $1^{st}$ order because the nonlinear coupling between the physics is handled explicitly. The second advantage of the method described in this manuscript is that the time step control in the fully implicit system can be based on the timescale of the solution rather than a stability-based time step restriction like the material Courant limit required of operator-split methods. In this work, a pilot code was used which employs this tightly coupled, fully implicit method to simulate a reactor core. Results are presented from a simulated control rod movement which show $2^{nd}$ order accuracy in time. Also described in this paper is a simulated rod ejection demonstrating how the fastest timescale of the problem can change between the state variables of neutronics, conduction and two-phase flow during the course of a transient.

Concrete fragmentation modeling using coupled finite element - meshfree formulations

  • Wu, Youcai;Choi, Hyung-Jin;Crawford, John E.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.173-195
    • /
    • 2013
  • Meshfree methods are known to have the capability to overcome the strict regularization requirements and numerical instabilities that encumber the finite element method (FEM) in large deformation problems. They are also more naturally suited for problems involving material perforation and fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings of concrete structures was able to be realistically captured by the coupled formulation.

Review of researches on coupled system and CFD codes

  • Long, Jianping;Zhang, Bin;Yang, Bao-Wen;Wang, Sipeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2775-2787
    • /
    • 2021
  • At present, most of the widely used system codes for nuclear safety analysis are one-dimensional, which cannot effectively simulate the flow field of the reactor core or other structures. This is true even for the system codes containing three-dimensional modules with limited three-dimensional simulation function such as RELAP-3D. In contrast, the computational fluid dynamics (CFD) codes excel at providing a detailed three-dimensional flow field of the reactor core or other components; however, the computational domain is relatively small and results in the very high computing resource consuming. Therefore, the development of coupling codes, which can make comprehensive use of the advantages of system and CFD codes, has become a research focus. In this paper, a review focus on the researches of coupled CFD and thermal-hydraulic system codes was carried out, which summarized the method of coupling, the data transfer processing between CFD and system codes, and the verification and validation (V&V) of coupled codes. Furthermore, a series of problems associated with the coupling procedure have been identified, which provide the general direction for the development and V&V efforts of coupled codes.

Analytical and multicoupled methods for optimal steady-state thermoelectric solutions

  • Moreno-Navarro, Pablo;Perez-Aparicio, Jose L.;Gomez-Hernandez, J.J.
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-166
    • /
    • 2022
  • Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially developed coupled and non-linear finite element research code is run taking into account all the materials of the cell and using symmetries and repetitions. These accurate results are used to validate the analytical ones.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

Charge-coupled analog-to-Digital Converter (전하결합소자를 이용한 Analog-to-Digital 변화기)

  • 경종민;김충기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.5
    • /
    • pp.1-9
    • /
    • 1981
  • Experimental results on a 4-bit charge-coupled A/D converter are described. Major operations in the successive approximation algorithm are implemented in a monolithic chip, CCADC, which was fabricated usir p-channel CCD technology, with its die size of 4,200 mil2 Typical operating frequency range has been found out to be from 500Hz to 200kHz. In that frequency range, no missing code has been found in the whole signal range of 2.4 volts for ramp signal slewing at 1 LSB/(sampling time). A discussion is made on several layout techniques to conserve the nominal binary ratio of (8:4:2:1) among the areas of four adjacent potential wells (M wells), whose charge storing capacities correspond to each bit magnitude - 3.6 pC, 1.8 pC, 0.9 pC, and 0.45 pC nominal in the order of MSB to the LSB. The effect of 'dump slot', which is responsible for the excessive nonlinearity (2$\frac{1}{2}$LSB) in the A/D converter, is explained. A novel input scheme called 'slot zero insertion' to circumvent the deleterious effects of the dump slot is described with the experimental results.

  • PDF