• 제목/요약/키워드: Counterflow configuration

Search Result 15, Processing Time 0.018 seconds

A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure (고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구)

  • Oh, Tae-Kyun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

Effects of CO2 Addition in Downstream Interaction between 2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합화염 사이의 후류상호작용에 있어서 CO2 첨가 효과)

  • Keel, Sang In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.29-36
    • /
    • 2013
  • Numerical study was conducted to clarify effects of added $CO_2$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced. The most discernible difference between the two with and without having $CO_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the (H, O, OH)-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with relatively short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $CO_2$ suppressed flame stabilization. Particularly this phenomenon was appreciable at flame conditions which lean and rich extinction boundary was merged. The detailed discussion of chemical effects of added $CO_2$ was addressed to the present downstream interaction.

Oscillatory Instabilities of Edge Flames in Solid Rocket Combustion (고체연료로켓에서 에지화염의 맥동 불안정성)

  • Kim Kang-Tae;Park Jun-Sung;Park Jeong;Kim Jeong-Soo;Keel Sang-In;Cho Han-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which ran be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

  • PDF

Effects of H2O Addition in Downstream Interaction between H2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합 화염 사이의 후류상호작용에 있어서 H2O 첨가 효과)

  • Park, Jeong;Kwon, Oh Boong;Kim, Tae Hyung;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • Numerical study was conducted to clarify effects of added $H_2O$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced in increase of strain rate. The most discernible difference between the two with and without having $H_2O$ and/or $H_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the OH-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with very short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $H_2O$ help lean flames at relatively low strain rate be sustained, and suppress the flame stabilization at high strain rates.

Numerical Study on H2 Preferential Diffusion Effect in Downstream Interactions between Premixed H2-air and CO-air Flames (상호작용 하는 H2-공기/CO-공기 예혼합화염에 미치는 H2 선호 확산 영향에 대한 수치적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Keel, Sang In;Yun, Jin Han
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.37-43
    • /
    • 2013
  • The effects of preferential diffusion of hydrogen in interacting counterflow $H_2$-air and CO-air premixed flames were investigated numerically. The global strain rate was varied in the range $30-5917s^{-1}$, where the upper bound of this range corresponds to the flame-stretch limit. Preferential diffusion of hydrogen was studied by comparing flame structures for a mixed average diffusivity with those where the diffusivities of H, $H_2$ and $N_2$ were assumed to be equal. Flame stability diagrams are presented, which show the mapping of the limits of the concentrations of $H_2$ and CO as a function of the strain rate. The main oxidation route for CO is $CO+O_2{\rightarrow}CO_2+O$, which is characterized by relatively slow chemical kinetics; however, a much faster route, namely $CO+OH{\rightarrow}CO_2+H$, can be significant, provided that hydrogen from the $H_2$-air flame is penetrated and then participates in the CO-oxidation. This modifies the flame characteristics in the downstream interaction between the $H_2$-air and CO-air flames, and can cause the interaction characteristics at the rich and lean extinction boundaries not to depend on the Lewis number of the deficient reactant, but rather to depend on chemical interaction between the two flames. Such anomalous behaviors include a partial opening of the upper lean extinction boundary in the interaction between a lean $H_2$-air flame and a lean CO-air flame, as well as the formation of two islands of flame sustainability in a partially premixed configuration with a rich $H_2$-air flame and a lean CO-air flame. At large strain rates, there are two islands where the flame can survive, depending on the nature of the interaction between the two flames. Furthermore, the preferential diffusion of hydrogen extends both the lean and the rich extinction boundaries.