• 제목/요약/키워드: Counter Rotating Vortex

검색결과 58건 처리시간 0.02초

NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE (U-자형 곡관내의 유동특성에 대한 수치해석적 연구)

  • Koh, D.H.;Kang, D.J.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.97-103
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

  • PDF

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE (U-자형 곡관내의 유동특성에 대한 수치해석적 연구)

  • Koh, D.H.;Kang, D.J.;Song, D.J.
    • Journal of computational fluids engineering
    • /
    • 제14권3호
    • /
    • pp.105-114
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction (폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실)

  • Lee, Sang-U;Kim,Yong-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제20권4호
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

An Experimental Study on Circulating Flow Around a Submerged Horizontal Plate (잠재 평판 주변에서 발생하는 순환류에 대한 실험적 연구)

  • 이정렬;한상우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제13권2호
    • /
    • pp.109-121
    • /
    • 2001
  • This paper describes results of an experimental study to examine the effect of a submerged horizontal breakwater to sea water exchange. Flow measurements were taken by using a PIV(Particie Image Velocimetry) system, and mean currents and wave ellipses extracted through the harmonic analysis are presented. As results, the rates of circulating flow were closely connected with the volume flux of incident waves and the counter-rotating vortex pair was observed at the onshore side of a plate. The dye study showed that incoming sea water and polluted water body mixed up significantly due to turbulent motions induced by a jet-like flow.

  • PDF

Characteristics of Turbulent Nonpremixed Jet Flame in Cross Air Flow (주유동에 수직으로 분사되는 난류 비예혼합 분류 화염의 특성)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제26권1호
    • /
    • pp.125-132
    • /
    • 2002
  • An experimental study on the characteristics of stability of propane turbulent nonpremixed jet flames discharged normal to air free-streams with uniform velocity profile is conducted. Experimental observations are focused on the flame shape, the stability considering two kinds of flame, lift-off distance, and the flame length according to velocity ratio. In order to investigate the mixing structure of the flame base at the lower limit, we employ the RMS technique and measure the species concentration by a gas chromatography. In the results of the stability curve and lifted flame, it is fecund that the dependency of nozzle diameter is closely related to the large-scale vortical structure representing counter-rotating vortices pair. Also, the detailed discussion on the phenomenon of blowout due to this large vortical motion, is provided.

A numerical simulation on the effect of hole geometry for film cooling flow (홀 형상이 막 냉각 유동에 미치는 효과에 대한 수치 해석적 연구)

  • Lee, Jeong-Hui;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제21권7호
    • /
    • pp.849-861
    • /
    • 1997
  • In this study, the effect of hole geometry of the cooling system on the flow and temperature field was numerically calculated. The finite volume method was employed to discretize the governing equation based on the non-orthogonal coordinate with non-staggered variable arrangement. The standard k-.epsilon. turbulence model was used and also the predicted results were compared with the experimental data to validate numerical modeling. The predicted results showed good agreement in all cases. To analyze the effect of the discharge coefficient for slots of different length to width, the inlet chamfering and radiusing holes were considered. The discharge coefficient was increased with increment of the chamfering ratio, radiusing ratio and slot length to width and also the effect of radiusing showed better result than chamfering in all cases. In order to analyze the difference between the predicted results with plenum region and without plenum region, the velocity profiles of jet exit region for a various flow conditions were calculated. The normal velocity components of jet exit showed big difference for the low slot length to width and high blowing rate cases. To analyze the flow phenomena injected from a row of inclined holes in a real turbine blade, three dimensional flow and temperature distribution of the region including plenum, hole and cross stream with flow conditions were numerically calculated. The results have shown three-dimensional flow characteristics, such as the development of counter rotating vortices, jetting effect and low momentum region within the hole in addition to counter rotating vortex structure in the cross stream.

Effects of Stroke Change on Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve SI Engine (Stroke 변화가 Four-Valve SI 기관 실린더내 난류 운동에너지에 미치는 영향)

  • Yoo, S.C.
    • Journal of the Korean Society of Visualization
    • /
    • 제9권4호
    • /
    • pp.16-21
    • /
    • 2011
  • The effects of stroke change on turbulent kinetic energy for the in-cylinder flow of a four-valve SI engine were studied. For this study, the same intake manifold, head, cylinder, and the piston were used to examine turbulence characteristics in two different strokes. In-cylinder flow measurements were conducted using three dimensional LDV system. The measurement method, which simultaneously collects 3-D velocity data, allowed a evaluation of turbulent kinetic energy inside a cylinder. High levels of turbulent kinetic energy were found in regions of high shear flow, attributed to the collisions of intake flows. These specific results support the more general conclusion that the inlet conditions play the dominant role in the generation of the turbulence fields during the intake stroke. However, in the absence of two counter rotating vortices, this intake generated turbulent kinetic energy continues to decrease but at a much faster rate.

Development of Gasoline Direct Swirl Injector III (직접분사식 가솔린 선회분사기 개발에 관한 연구 III)

  • Part, Young-Kug;Oh, Jae-Geon;Lee, Choong-Won
    • Journal of ILASS-Korea
    • /
    • 제6권4호
    • /
    • pp.39-48
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. Main purpose of the present study is to measure spray characteristics of GDSI for real engine application. We have investigated experimentally spray tip penetration, spray angle, tip velocity and spatial spray distribution. Counter-rotating vortex grown on the spray surface plays an important role in the spray characteristics. Accordingly the spray tip penetration and tip velocity do not excess 50mm, 20m/s respectively, under 0.6MPa ambient pressure. the spray cone angle of GDSI have a same tendency to a simplex swirl atomizer.

  • PDF

A Study on the Characteristics of In-Cylinder Air Flow with 3-D LDV Measurement (3차원 LDV를 이용한 실린더내 공기 유동특성에 관한 연구)

  • Yoo, S.C.
    • Journal of ILASS-Korea
    • /
    • 제11권1호
    • /
    • pp.39-47
    • /
    • 2006
  • In-cylinder flows in a motored 3.5L four-valve SI engine were investigated quantitatively using three-component LDV system, to determine how engine configuration affects the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, two distinct intake/piston arrangements were used to examine the flow characteristics. Quantification of the flow field was done by calculating two major parameters which are believed to characterize adequately in-cylinder motion. These quantities were turbulent kinetic energy(TKE) and tumble ratio in each plane at each crank angle. The results showed that in-cylinder flow pattern is dominated by the intake effects and two counter rotating vortices, developed during the intake stroke, produced relatively low tumble ratio. Therefore, the applicability of these quantities should be carefully considered when evaluating characteristics resulting from the complex in-cylinder flow motions.

  • PDF