• Title/Summary/Keyword: Cost Functions

Search Result 1,365, Processing Time 0.028 seconds

A Study on Cost Estimate for Building Parts in the Schematic Design Phase -Focusing on Educational Research Facility- (부분별 코스트산정법을 활용한 계획설계 비용예측에 관한 연구 - 교육연구시설을 중심으로 -)

  • Kim, Yo-Han;Lee, Baek-Rae;Kim, Ju-Hyung;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.1 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • Construction cost estimation in the early phase provides the opportunity to make reasonable decisions related to the project. For estimating this cost, various methods have been developed. But several problems have been recognized like accuracy, relation beteewn design and cost etc. In this study, we developed the method of cost estimating for building parts. The modified method has defferent ratio of space functions to calculate cost more correctly. Also historical cost data is used in this modified method for architects to estimate cost conveniently. By this modified method, we expects architects should easily design buildings based on cost.

Approximate Multi-Objective Optimization of Robot Casting Considering Deflection and Weight (처짐과 무게를 고려한 주물 프레임의 다중목적 근사최적설계)

  • Choi, Ha-Young;Lee, Jongsoo;Park, Juno
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.954-960
    • /
    • 2012
  • Nowadays, rapidly changing and unstable global economic environments request a lot of roles to engineers. In this situation, product should be designed to make more profit by cost down and to satisfy distinguished performance comparing to other competitive ones. In this research, the optimization design of the industrial robot casting will be done. The weight and deflection have to be reduced as objective functions and stress has to be constrained under some constant value. To reduce time cost, CCD (Central Composite Design) will be used to make experimental design. And RSM (Response Surface Methodology) will be taken to make regression model for objective functions and constraint function. Finally, optimization will be done with Genetic Algorithm. In this problem, the objective functions are multiple, so NSGA-II which is brilliant and efficient for such a problem will be used. For the solution quality check, the diversity between Pareto solutions will be also checked.

Functional Requirements about Modeling Methodology for CALS (CALS 구현을 위한 모델링 방법론의 기능조건)

  • 김철한;우훈식;김중인;임동순
    • The Journal of Society for e-Business Studies
    • /
    • v.2 no.2
    • /
    • pp.89-113
    • /
    • 1997
  • Modeling methodology has been widely used for analysis and design of a information system. Specially, under the CALS environments, modeling approach is more important because the enterprise functions are inter-related and information sharing speeds up the business. In this paper, we suggest functional requirements about modeling methodology for CALS by surveying the IDEF0 and ARIS. The former is FIPS 183 and the latter is basic methodology of SAP/R3 which is world-wide ERP system. The proposed functional requirements include all semantics of IDEF0 and adds some features. The first is adding modeling components which are semantic representations. In addition to ICOMs, we add the time and cost component which is required to execute the function. The second is tracing mechanism. When we need some information, we drive the functions related with the information by reverse tracing of the function which produces the information as a output and input. Through the tracing, we find out the bottleneck process or high cost process. This approach guarantees the integrity of data by designating the data ownership. Finally, we suggest the final decomposition level. We call the final decomposed function into unit function which has only one output data. We can combine and reconstruct some of functions such as 'lego block' combination.

  • PDF

A new hybrid meta-heuristic for structural design: ranked particles optimization

  • Kaveh, A.;Nasrollahi, A.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.405-426
    • /
    • 2014
  • In this paper, a new meta-heuristic algorithm named Ranked Particles Optimization (RPO), is presented. This algorithm is not inspired from natural or physical phenomena. However, it is based on numerous researches in the field of meta-heuristic optimization algorithms. In this algorithm, like other meta-heuristic algorithms, optimization process starts with by producing a population of random solutions, Particles, located in the feasible search space. In the next step, cost functions corresponding to all random particles are evaluated and some of those having minimum cost functions are stored. These particles are ranked and their weighted average is calculated and named Ranked Center. New solutions are produced by moving each particle along its previous motion, the ranked center, and the best particle found thus far. The robustness of this algorithm is verified by solving some mathematical and structural optimization problems. Simplicity of implementation and reaching to desired solution are two main characteristics of this algorithm.

A Mixed Integer Linear Programming Approach for the Profit Based Unit Commitment Problem under Non-Linear Fuel Consumption Constraint and Maintenance Cost (비선형 연료 제약 및 유지보수 비용을 고려한 Mixed Integer Linear Programming 기반 발전기 주간 운용계획 최적화)

  • Song, Sang-Hwa;Lee, Kyung-Sik
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • This paper considers a profit-based unit commitment problem with fuel consumption constraint and maintenance cost, which is one of the key decision problems in electricity industry. The nature of non-linearity inherent in the constraints and objective functions makes the problem intractable which have led many researches to focus on Lagrangian based heuristics. To solve the problem more effectively, we propose mixed integer programming based solution algorithm linearizing the complex non-linear constraints and objectives functions. The computational experiments using the real-world operation data taken from a domestic electricity power generator show that the proposed algorithm solves the given problem effectively.

Performance improvement of single-layer neural network with feedback by analyzing the computational energy function (계산 에너지 함수 분석을 통한 궤환성을 갖는 단층신경회로망의 성능개선)

  • 고경희;강민제
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.54-60
    • /
    • 1997
  • A new method to neglect the third term of the computational energy expression in the single-layer neural network with feedback is introduced. The system often converges to local minima instead of to global minima, because the computational energy is not matched exactly with the cost function being optimized. One of the factors causing these tow functions different is the third term of computational enegy expression. Regarding this third term energy very small, it is always ignored in designing the system. However, a sthe system growing, this third term energy is also growing and this grown term makes the computational energy function much different from the cost function. In results of differency between two functions, system converges to local minima more than before. In this paper, a new method to neglect te third term energy is introduced, so that the system with tis new method has been imroved.

  • PDF

Single Sensor Charging System with MPPT Capability for Standalone Streetlight Applications

  • Osman, Siti Rahimah;Rahim, Nasrudin Abd.;Selvaraj, Jeyraj;Al-Turki, Yusuf A.
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.929-938
    • /
    • 2015
  • Maximum power point tracking (MPPT) and battery charging control are two important functions for a solar battery charger. The former improves utilization of the available solar energy, while the latter ensures a prolonged battery life. Nevertheless, complete implementation of both functions can be complex and costly, especially for low voltage application such as standalone street lamps. In this paper, the operation of a solar battery charger for standalone street light systems is investigated. Using only one voltage sensor, the solar charger is able to operate in both MPPT and constant voltage (CV) charging mode, hence providing high performance at a low cost. Using a lab prototype and a solar simulator, the operation of the charger system is demonstrated and its performance under varying irradiance is validated.

The Design and Implementation of Method for Providing VCR Functions in VOD (VOD상에서 VOR 기능 제공 방법 설계 및 구현)

  • Hong, Myung-Joon;Park, Ho-Kyun;Ryou, Hwang-Bin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2421-2433
    • /
    • 1997
  • In this paper, based on the relative logical storage cost of each movie by the difference of service request probability, we propose and implement the SDU(Separate Data Use) method and the EDU(Existing Data Use) method to provide FF(Fast Forward) and FR(Fast Reverse) function in efficiently through analysing MPEG bit stream and frame characteristics. By selecting and applying the FF/FR function providing method based on the service request probability of movie, the proposed method can reduce the cost of FF/FR functions for total serviced movies.

  • PDF

Requirement Analysis and Optimal Design of an Operational Change Detection Software

  • Lee, Young-Ran;Bang, Ki-In;Shin, Dong-Seok;Jeong, Soo;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • This paper describes what an operational change detection tool requires and the software which was designed and developed according to the requirements. The top requirement for the application of the software to operational change detection was identified: minimization of false detections, missing detections and operational cost. In order to meet such a requirement, the software was designed with the concept that the ultimate decision and isolation of changes must be performed manually by visual interpretation and all automatic algorithms and/or visualization techniques must be defined as support functions. In addition, the modular structure of the proposed software enables the addition of a new support function with the minimum development cost and minimum change of the operational environment.

Scene-based Nonuniformity Correction by Deep Neural Network with Image Roughness-like and Spatial Noise Cost Functions

  • Hong, Yong-hee;Song, Nam-Hun;Kim, Dae-Hyeon;Jun, Chan-Won;Jhee, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.11-19
    • /
    • 2019
  • In this paper, a new Scene-based Nonuniformity Correction (SBNUC) method is proposed by applying Image Roughness-like and Spatial Noise cost functions on deep neural network structure. The classic approaches for nonuniformity correction require generally plenty of sequential image data sets to acquire accurate image correction offset coefficients. The proposed method, however, is able to estimate offset from only a couple of images powered by the characteristic of deep neural network scheme. The real world SWIR image set is applied to verify the performance of proposed method and the result shows that image quality improvement of PSNR 70.3dB (maximum) is achieved. This is about 8.0dB more than the improved IRLMS algorithm which preliminarily requires precise image registration process on consecutive image frames.