• Title/Summary/Keyword: Cost/Reliability analysis

Search Result 810, Processing Time 0.03 seconds

A Strength Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission

  • Bae, Myung Ho;Bae, Tae Yeol;Yoo, Young Rak
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.163-172
    • /
    • 2018
  • The power train of hydro-mechanical continuously variable transmission(HMCVT) for the middle class forklift makes use of an hydro-static unit, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The complex helical & planetary gears are a very important part of the transmission because of strength problems. The helical & planetary gears belong to the very important part of the HMCVT's power train where strength problems are the main concerns including the gear bending stress, the gear compressive stress and scoring failures. The present study, calculates specifications of the complex helical & planetary gear train and analyzes the gear bending and compressive stresses of the gears. It is necessary to analyze gear bending and compressive stresses confidently for an optimal design of the complex helical & planetary gears in respect of cost and reliability. This paper not only analyzes actual gear bending and compressive stresses of complex helical & planetary gears using Lewes & Hertz equation, but also verifies the calculated specifications of the complex helical & planetary gears by evaluating the results with the data of allowable bending and compressive stress from the Stress - No. of cycles curves of gears. In addition, this paper explains actual gear scoring and evaluates the possibility of scoring failure of complex helical & planetary gear train of hydro-mechanical continuously variable transmission for the forklift.

Dimensional Optimization of Electric Component in Ultra Thin-wall Injection Molding by Using Moldflow Simulation (초박육 사출성형에서 Moldflow 시뮬레이션을 활용한 전자부품의 형상 최적화)

  • Lee, Jung-Hee;Bae, Hyun-Sun;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.1-6
    • /
    • 2020
  • Micro-structure components applied to various disciplines are steadily demanded with lighter weight and better quality. This is because that ultra thin-wall injection molding has been paid attention with a lot of benefits such as cost reduction, shorter process period, and so forth. However, this technology is complicate and difficult to obtain high quality of products compared with conventional injection molding due to warpage caused by uneven shrinkage and molecular orientation. Since warpage of products directly affects product quality and overall performance of devices, it is essential to predict deformation behavior to achieve high precision of molded products. Therefore, this study aims to find out adequate thin-wall mold design for FPC connector housing by employing Moldflow simulation before application. In addition, experimental research is performed by using a fabricated mold structure based on simulated results to prove accuracy and reliability of the suggested simulation for warpage analysis.

The Stress Analysis of Planetary Gear System of Mixer Reducer for Concrete Mixer Truck

  • Bae, Myung Ho;Bae, Tae Yeol;Cho, Yon Sang;Son, Ho Yeon;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.77-81
    • /
    • 2015
  • In general, the gears of mixer reducer for concrete mixer truck make use of the differential type planetary gear system to rotate mixer drum smoothly on the initial conditions. The planetary gear system is very important part of mixer reducer for concrete mixer truck because of strength problem. In the present study, calculating the gear specifications and analyzing the gear bending & compressive stresses of the differential planetary gear system for mixer reducer are necessary to analyze gear bending and compressive stresses confidently, for optimal design of the planetary gear system in respect to cost and reliability. As a result, analyzing actual gear bending and compressive stresses of the planetary gear system using Lewes & Hertz equation and verifying the calculated specifications of the planetary gear system, evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears.

IOT-based SMEs producing standardized information system model analysis and design (IOT기반 중소기업 생산정보화시스템 표준화 모델 분석 및 설계)

  • Yoon, Kyungbae;Chang, Younghyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.2 no.1
    • /
    • pp.87-91
    • /
    • 2016
  • This study is to develop a standard model in order to establish IOT production information system and to analyze the effect. Professional IT industry and SMEs that want to build a production information system can be applied to standard models to build the system more effectively. It provides ease of construction and reliability for IOT production information system with removing irrational elements, product quality and reducing production cost. In addition, it can be applied to standardize management of raw materials supply and demand aggregation processes of production and constructed a system more effectively using standard module.

High-Power Electronic Ballast Design for Metal-Halide Lamp without Acoustic Resonance (음향 공명 현상을 제거한 MHL용 고출력 전자식 안정기 설계)

  • Park, Chong-Yun;Kim, Ki-Nam;Lee, Bong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1187-1194
    • /
    • 2008
  • This paper presents a high-power electronic ballast for a metal-hallide lamp(MHL) that employs frequency modulation(FM) technique to eliminate acoustic resonance(AR). The proposed ballast consists of a full-bridge rectifier, a power factor correction(PFC) circuit, a full-bridge(FB) inverter, an ignitor using LC resonance and an FM control circuit. Whereas a manual PFC provides advantages in terms of high reliability and low cost for constructing the circuit, it is difficult to supply a stable voltage because of the output voltage ripple that occurs with a period of 120Hz. Although the ballast can be designed with a small size and a light weight if it is driven at a switching frequency between 1 and 100 kHz, AR will occur if the eigen-value frequency of the lamp coincides with the inverter's operation frequency. The operation frequency was modulated in real time according to the output voltage ripple to compensate for the variation in power supplied to the lamp and eliminate AR. Performance of the proposed technique was validated through numerical analysis, computer simulation using PSPICE and by applying it to an electronic ballast for a prototype 1kW MHL.

Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator (적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.

Analysis for the Operating Characteristics when the Induction Motor is Used as a Generator (유도전동기를 발전기로 사용시 동작 특성 해석)

  • Kim, Jong-Gyeum
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Squirrel cage induction motor is the main driving system of industrial field and familiar with its use in a large variety of applications. The structure and operating characteristics of induction generator is almost identical to induction motor, but the induction generator part is used restrictively from hydropower power and wind power development etc. Recently induction generator is commonly used for micro & small hydro power applications due to its simplicity, reliability, low cost and robustness. Input and output of induction motor has turned against at the induction generator operation. Rotation speed of induction generator is small faster than synchronous speed of induction motor. As output of induction machines increases with the increasement of speed, so loss is same. Actually, generator efficiency is lower than motor at this condition. If induction generator is connected with mechanical load such as increaser, total efficiency is decreased. Consequently the quality in compliance with an induction motor parameter applying like that in the generator is a possibility of having the error of some. In this paper, we analyzed that input, output, torque and efficiency of induction machine is different from each other above and below synchronous speed.

A Study on the Simulation Model Verification for Performance Estimation of Torsion Beam Axle (토션빔액슬 성능 평가를 위한 해석 모델 검증에 관한 연구)

  • Choi, Sung-Jin;Park, Jung-Won;Jeon, Kwang-Ki;Lee, Dong-Jae;Choi, Gyoo-Jae;Park, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2006
  • The torsion beam axle type is widely used in the rear suspension for small passenger cars due to low cost, good performance, etc. To develop the torsion beam axle, it is necessary to estimate the characteristics of rear suspension from the design process. The characteristics estimation of the torsion beam axle is performed using FEM, dynamic simulation and is verified the real test. In this study, the natural frequency and roll stiffness of the torsion beam axle were measured by FEM, and the reliability of the FE model was evaluated according to the comparison of test data. This study presents a unique method for the finite element modeling and analysis of the torsion beam axle. The results of the FEA were verified using test data.

Ethernet-Based Avionic Databus and Time-Space Partition Switch Design

  • Li, Jian;Yao, Jianguo;Huang, Dongshan
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.286-295
    • /
    • 2015
  • Avionic databuses fulfill a critical function in the connection and communication of aircraft components and functions such as flight-control, navigation, and monitoring. Ethernet-based avionic databuses have become the mainstream for large aircraft owning to their advantages of full-duplex communication with high bandwidth, low latency, low packet-loss, and low cost. As a new generation aviation network communication standard, avionics full-duplex switched ethernet (AFDX) adopted concepts from the telecom standard, asynchronous transfer mode (ATM). In this technology, the switches are the key devices influencing the overall performance. This paper reviews the avionic databus with emphasis on the switch architecture classifications. Based on a comparison, analysis, and discussion of the different switch architectures, we propose a new avionic switch design based on a time-division switch fabric for high flexibility and scalability. This also merges the design concept of space-partition switch fabric to achieve reliability and predictability. The new switch architecture, called space partitioned shared memory switch (SPSMS), isolates the memory space for each output port. This can reduce the competition for resources and avoid conflicts, decrease the packet forwarding latency through the switch, and reduce the packet loss rate. A simulation of the architecture with optimized network engineering tools (OPNET) confirms the efficiency and significant performance improvement over a classic shared memory switch, in terms of overall packet latency, queuing delay, and queue size.

A Demonstrative Operation of A Membrane Filtration System in Siheung Water Treatment Plant (시흥정수장 막여과시설 시범운영)

  • 김한승;김충환;김학철;윤재경;안효원
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.57-68
    • /
    • 2004
  • A demonstrative operation of a membrane system with its caparity of 3,600m$^3$/d was carried out using reservoir water as raw water for the application of membrane filtration system to drinking water treatment. The operation was undertaken at a constant flux of 0.9 m$^3$/m$^2$/d for three months. Backwashing with NaClO of 3 ppm was allowed for 30 seconds every 20 minutes of filtration. Physical cleaning was introduced after 69 times of filtration/backwashing cycle with air-scrubbing and backwashing for 1 minute, and flushing for 2 minutes. In this study, water treatment performance was investigated compared with the existing rapid sand filtration process. The membrane system was operated with no significant problems during the test period. Higher water quality was obtained in the membrane filtration than in the rapid sand filtration in terms of particulate matters such as turbidity and microbes. Although the finished water of the membrane filtration contained slightly higher concentration in dissolved matters than that of the conventional one, it met the drinking water standard. The demonstrative operation showed that membrane filtration has a reliability in drinking water treatment. Researches should be needed on cost analysis through long-term operation and optimization of operation condition for further application.

  • PDF