• Title/Summary/Keyword: Cosserat theory

Search Result 2, Processing Time 0.015 seconds

Nonlinear Analysis of Simply supported Elastic Beams under Parametric Excitation (계수려진을 받는 단순지지 보의 비선형 진동특성)

  • Son, In-Soo;Yabuno, Hiroshi;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.712-715
    • /
    • 2006
  • This paper presents the nonlinear characteristics of the parametric resonance of a simply supported beam which is inextensible beam. For the beam model, the order-three expanded equation of motion has been determined in a form amenable to a perturbation treatment. The equation of motion is derived by a special Cosserat theory. The method of multiple scales is used to determine the equations that describe to the first-order modulation of the amplitude of simply supported beam. The stability and the bifurcation points of the system are investigated applying the frequency response function.

  • PDF

The dilatancy and numerical simulation of failure behavior of granular materials based on Cosserat model

  • Chu, Xihua;Yu, Cun;Xu, Yuanjie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2012
  • The dilatancy of granular materials has significant influence on its mechanical behaviors. The dilation angle is taken as a constant in conventional associated or non-associated flow rules based on Drucker-Prager yields theory. However, various experimental results show the dilatancy changes during progressive failure of granular materials. A non-associated flow rule with evolution of dilation angle is adopted in this study, and Cosserat continuum theory is used to describe the behaviors of granular materials for considering to some extent the its internal structure. Numerical examples focus on the bearing capacity and localization of granular materials, and results illustrate the capability and performance of the presented model in modeling the effect on failure behavior of granular materials.