• 제목/요약/키워드: Cosmic Radiation

검색결과 135건 처리시간 0.028초

Modeling of Space Radiation Exposure Estimation Program for Pilots, Crew and Passengers on Commercial Flights

  • Hwang, Junga;Dokgo, Kyunghwan;Choi, Enjin;Park, Jong-Sun;Kim, Kyung-Chan;Kim, Hang-Pyo
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.25-31
    • /
    • 2014
  • There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O'Neill 2010.

HAUSAT-2 위성의 방사능 환경해석 및 소프트웨어 HAMMING CODE EDAC의 구현에 관한 연구 (HAUSAT-2 SATELLITE RADIATION ENVIRONMENT ANALYSIS AND SOFTWARE RAMMING CODE EDAC IMPLEMENTATION)

  • 정지완;장영근
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권4호
    • /
    • pp.537-558
    • /
    • 2005
  • 본 논문에서는 HAUSAT-2위성이 운용될 케도의 우주 방사능 환경 및 총 피폭효과(Total Ionizing Dose), 단일사건 효과(Single Event Effects) 등에 대해 분석하였다. 총 피폭효과에 영향을 미치는 우주 방사능은 포획된 양성자, 전자, 태양 양성자 및 우주선이다. 총 피폭효과는 선량 심도선 분석을 통해 해석을 수행하였으며, DMBP(Design Margin Breakpoint) 방법과 3-D 구분구적법을 이용하여 HAVSAT-2의 부품의 총 피폭량에 대한 내성을 검증하였다. 단일사건 효과에 대하여 위성체 외부와 내부 방사능 환경으로 양성자와 중이온에 대하여 선형에너지 전달량(LET) 스펙트럼을 분석하였으며, HAUSAT-2의 전자소자로 사용예정인 MPC860T2B 마이크로프로세서와 메모리 K6X8008T2B에 대한 SEU(Single Event Upset) 및 SEL(Single Event Latch-up) 발생률을 추정하였다. 분석 결과 SEU는 운용 중에 수차례 발생하며 SEL 발생은 임무기간동안 일어나지 않을 것으로 추정되었다. HAUSAT-2는 소프트웨어 해밍코드 EDAC을 이용하여 SEU 발생에 대처할 수 있는 시스템 레벨의 설계를 반영하였다. 이 연구에서 수행된 방사능 해석은 ESA의 SPENVIS소프트웨어를 이용하였다.

Observation of the Cosmic Near-Infrared Background with the CIBER rocket

  • 김민규;;이형목;;;;;;;;;이대희;;;;;남욱원
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.42-42
    • /
    • 2012
  • The First stars (Pop.III stars) in the universe are expected to be formed between the recombination era at z - 1100 and the most distant quasar (z - 8). They have never been directly detected due to its faintness so far, but can be observed as a background radiation at around 1${\mu}m$ which is called the Cosmic Near-Infrared Background (CNB). Main part of the CNB is thought to be redshifted Lyman-alpha from gas clouds surrounding the Pop.III stars. Until now, the COBE (COsmic Background Explorer) and the IRTS (Infrared Telescope in Space) observed excess emission over the background due to galaxies. To confirm the COBE and the IRTS results and pursue more observational evidences, we carried out the sounding rocket experiment named the Cosmic Infrared Background ExpeRiment (CIBER). The CIBER is successfully launched on July 10, 2010 at White Sands Missile Range, New Mexico, USA. It consists of three kinds of instruments. We report the results obtained by LRS (Low Resolution Spectrometer) which is developed to fill the uncovered spectrum around 1${\mu}m$. LRS is a refractive telescope of 5.5 cm aperture with spectral resolution of 20 - 30 and wavelength coverage of 0.7 to 2.0${\mu}m$. After subtracting foreground components (zodiacal light, integrated star light and diffuse galactic light) from the sky brightness of observed five fields, there remained significant residual emission (even for the lower limit case) consistent with the IRTS and the COBE results. In addition, there exists a clear gap at 0.7 - 0.8${\mu}m$ in the CNB spectrum over the background due to galaxies according to recent results (Matsuoka et al. 2011; Mattila et al. 2011). The origin of the excess emission could be ascribed to the Pop.III stars with its active era of z = 7 - 10.

  • PDF

Physical modeling of dust polarization spectrum by RAT alignment and disruption

  • Lee, Hyeseung;Hoang, Thiem
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.38.1-38.1
    • /
    • 2021
  • Dust polarization depends on the physical and mechanical properties of dust, as well as the properties of local environments. To understand how dust polarization varies with grain mechanical properties and the local environment, in this paper, we model the wavelength-dependence polarization of starlight and polarized dust emission by aligned grains by simultaneously taking into account grain alignment and rotational disruption by radiative torques (RATs). We explore a wide range of the local radiation field and grain mechanical properties characterized by tensile strength. We find that the maximum polarization and the peak wavelength shift to shorter wavelengths as the radiation strength U increases due to the enhanced alignment of small grains. Grain rotational disruption by RATs tends to decrease the optical-near infrared polarization but increases the ultraviolet polarization of starlight due to the conversion of large grains into smaller ones. In particular, we find that the submillimeter (submm) polarization degree at 850㎛(P850) does not increase monotonically with the radiation strength or grain temperature (Td), but it depends on the tensile strength of grain materials. Our physical model of dust polarization can be tested with observations toward star-forming regions or molecular clouds irradiated by a nearby star, which have higher radiation intensity than the average interstellar radiation field. Finally, we compare our predictions of the P850-Td relationship with Planck data and find that the observed decrease of P850 with Td can be explained when grain disruption by RATs is accounted for, suggesting that interstellar grains unlikely to have a compact structure but perhaps a composite one. The variation of the submm polarization with U (or Td)can provide a valuable constraint on the internal structures of cosmic dust

  • PDF

Probing Cosmic Near Infrared Background using AKARI Data

  • 서현종;;정웅섭;이형목;;;;표정현
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.34.1-34.1
    • /
    • 2013
  • The first generation stars in the universe are not observed as discrete objects by using current observational facilities, but their contributions are redshifted to the near infrared wavelength bands at present universe. Therefore, investigation of background radiation at near infrared is important for the study of the first stars. In this study, we present new observations of spatial fluctuations in sky brightness toward the north ecliptic pole using data from AKARI. Among pointed observation program of AKARI, we used two pointing surveys named Monitor field and NEP wide field at three wavelength bands 2.4, 3.2, and 4.1 ${\mu}m$. To obtain spatial fluctuations from observed images, first of all, we exclude pixels affected by resolved foreground objects and then obtain diffuse map which consists of diffused radiation only. Because the diffuse map contains not only cosmological components but also various foreground components, in order to detect cosmological components, we estimate the contributions of foreground components separately. The results of this study show that there remains excess spatial fluctuation that cannot be explained by known foreground sources. This work is based on observations with AKARI, a JAXA project with the participation of ESA.

  • PDF

Probing Cosmic Near Infrared Background using AKARI Data

  • 서현종;;정웅섭;이형목;;;;표정현
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.35.1-35.1
    • /
    • 2013
  • The first generation stars in the universe are not observed as discrete objects by using current observational facilities, but their contributions are redshifted to the near infrared wavelength bands at present universe. Therefore, investigation of background radiation at near infrared is important for the study of the first stars. In this study, we present new observations of spatial fluctuations in sky brightness toward the north ecliptic pole using data from AKARI. Among pointed observation program of AKARI, we used two pointing surveys named Monitor field and NEP wide field at three wavelength bands 2.4, 3.2, and 4.1 ${\mu}$. To obtain spatial fluctuations from observed images, first of all, we exclude pixels affected by resolved foreground objects and then obtain diffuse map which consists of diffused radiation only. Because the diffuse map contains not only cosmological components but also various foreground components, in order to detect cosmological components, we estimate the contributions of foreground components separately. The results of this study show that there remains excess spatial fluctuation that cannot be explained by known foreground sources. This work is based on observations with AKARI, a JAXA project with the participation of ESA.

  • PDF

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

극항로 우주방사선 예보 모델 개발을 위한 사전 연구 (Pre-study for Polar Routes Space Radiation Forecast Model Development)

  • 황정아;신대윤
    • 한국위성정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.23-30
    • /
    • 2013
  • 본 연구는 "극항로 우주방사선 예보 모델 개발을 위한 사전연구"로서 2013년부터 본격적으로 개발하게 될 기상청의 극항로 우주방사선 예보 모델의 개발 방안 마련을 위한 사전 조사에 초점을 맞추고 있다. 자료 조사는 주로 항공기 운항과 우주기상 관련 문헌 및 법령 조사, 국내 항공사들의 우주기상 관련 운영지침 및 실태 조사를 통해서 이루어졌다. 또한 주요 선진국들이 현재 사용하고 있는 우주 방사선 계산 프로그램들의 장단점을 파악하고 개선할 수 있는 가능성을 찾는데 주력하였다. 조사 결과 국내에서는 아직 극항로 우주방사선을 예보하는 독자적인 모델이 전무한 상황으로 극항로 우주방사선 예보 모델의 국내 개발의 필요성이 절실함을 파악하였다. 현재 주요 선진국에서 사용하고 있는 대부분의 우주방사선 계산 프로그램들이 태양활동 및 우주기상의 변화를 제대로 반영하지 못하고 있다는 사실도 파악하였다. 본 연구에서는 현재 일반적으로 널리 사용되고 있는 우주방사선 계산 프로그램들의 장단점을 비교 분석하였다. 최종적으로 현재의 우주방사선 계산 모델들이 반영하지 못한 실시간 우주기상 효과를 반영하고, 보다 정밀한 우주방사선 예보 모델을 개발하고자 하는 목적으로 다음의 4가지 방안을 최종 제시하였다. (1) 우주방사선 예보 모델의 기반이 될 지상 방사선량 계산 프로그램의 후보 선정, (2) 항공기 고도에서 적용 가능한 정밀한 대기 모델 개선 및 결정, (3) 지상 방사선량 계산 프로그램과 항공기 고도에서의 대기 모델과 결합, (4) 최종적으로 결합된 우주방사사선 모델에 우주기상 예보 정보 반영.

Progress Report of the Hubble Constant Determination based on the TRGB Method

  • Jang, In Sung;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.46.2-46.2
    • /
    • 2015
  • Modern methods in determining the value of the Hubble constant are divided into two main ways: the classical distance ladder method and the inverse distance ladder method. The classical distance ladder method is based on Cepheid calibrated Type Ia supernovae (SNe Ia), which are known as powerful distance indicator. The inverse distance ladder method uses cosmic microwave background radiation, which emitted from the high-z universe, and the cosmological model. Recent estimations of the Hubble constant based on these two methods show a $2{\sim}3{\sigma}$ difference, which called the "Hubble tension". It is currently an issue in the modern cosmology. We have been working on the luminosity calibration of SNe Ia based on the Tip of the Red Giant Branch (TRGB), which is a precise population I distance indicator. We present the TRGB distance estimates of 5 SNe Ia host galaxies with the archival Hubble Space Telescope image data. We derive the mean absolute maximum magnitude of 5 SNe Ia and the value of the Hubble constant. Cosmological implications of our estimate will be discussed.

  • PDF

NONTHERMAL COMPONENTS IN THE LARGE SCALE STRUCTURE

  • MINIATI FRANCESCO
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.465-470
    • /
    • 2004
  • I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to $\gamma$-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of $\gamma$-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.