• Title/Summary/Keyword: Cortical cells

Search Result 308, Processing Time 0.022 seconds

Reproductive Structures of Pachymeniopsis elliptica (Holmes) Yamada (Rhodophyta, Grateloupiaceae) (홍조 도박(Pachymeniopsis elliptica (Holmes) Yamada)의 생식기 구조)

  • 이해복
    • Journal of Plant Biology
    • /
    • v.27 no.4
    • /
    • pp.233-239
    • /
    • 1984
  • Reproductives structures of Pachymeniopsis elliptica (Holmes) Yamade (Rhodophyta, Grateloupiaceae) are investigated. In female gametophyte the carpogonial branch and auxiliary cell are produced in separate accessory branch system, the primary ampullar filament originated from mid-cortical layer. After fertilization, auxiliary cell joined with connecting filament becomes a fusion cell by fusing with several neighboring ampullar cells. The fusion cell produces a gonimoblast initial. It divides into gonimoblast cells, which later convert to carposporangia. In male gametophyte superficial cortical cells of vegetative filament produce two spermatangial mother cells which cut off up to three spermatangia respectively. Tetrasporangial initials are formed from the 6th to 12th cells of the cortical layer in tetrasporophyte, and divided cruciately to form tetrasporangium. Some of the sporangia are, however, divided zonately.

  • PDF

Percutaneous Fine Needle Aspiration Cytology of Adrenal Cortical Carcinoma - A Case Report - (부신피질암종의 세침흡인 세포학적 검색 - 1례 보고 -)

  • Jeong, Myoung-Ja;Lee, Ho;Kang, Myoung-Jae;Lee, Dong-Geun;Choi, Ho-Yeul;Kim, Sang-Ho
    • The Korean Journal of Cytopathology
    • /
    • v.6 no.1
    • /
    • pp.58-61
    • /
    • 1995
  • Fine-needle aspiration (FNA) biopsy has become the procedure of choice for initial diagnosis of adrenal masses. However, there have been relatively few reports discussing the FNA cytologic features of adrenal cortical carcinoma. Recently, we experienced a case of FNA cytology of bilateral adrenal cortical carcinoma in a 61-year old man. The smear revealed loosely cohesive pleomorphic tumor cells with hemorrhagic and necrotic background. The tumor cells showed oval to spindle hyperchromatic nuclei and prominent nucleoli with frequent mitotic figures. The cytoplasm of tumor cells was relatively abundant and sometimes vacuolated. These cytologic findings were interpreted as an ad renal cortical carcinoma, undifferentiated pattern.

  • PDF

Betaine Attenuates Glutamate-induced Neurotoxicity in Primary Cultured Brain Cells

  • Park, Mi-Jung;Kim, So-Ra;Huh, Hoon;Jung, Jee-Hyung;Kim, Young-Choong
    • Archives of Pharmacal Research
    • /
    • v.17 no.5
    • /
    • pp.343-347
    • /
    • 1994
  • Effects of betaine on glutamate-induced neurotoxicity were examined on primary culturs of chicken embryonic brain cells and on rat cortical cultures. Betaine was found to attenuate glutamate-induced neurotoxicity both morphologically and biochemically. A 30 min exposure of chicken embryonic brain cells cultured for 12 days to 500 .mu.M glutamate produced wide-spread acute neuronal swelling and neurtic fragmentation. A 2-h pretreatment of cultured chicken embryonic brain cells with i mM betaine prior to a 30 min exposure to 500 , mu, M glutamate significantly raised the survival rate of neurons in the culture. When chicken embryonic brain cells were pretreated for 2 h with i mM betaine followed by exposure to 100 .mu.M glutamate for 42 h, lactate dehydrogenase levels within the cells remained at 62% of .mu.M untreated control values while glutamate-treated control fell to 0% lactate dehydrogenase. Betaine also exerted attenuating effects on N-methyl-D-asparte-, kainate-and quisqualate-induced neurotoxicity in a similar manner to that observed with glutamate. Similar neuroprotective effects of betaine with rat cortical cultures.

  • PDF

Extracellular ATP Stimulates $Na^+\;and\;Cl^-$ Transport through the Activation of Multiple Purinergic Receptors on the Apical and Basolateral Membranes in M-1 Mouse Cortical Collecting Duct Cells

  • Jung, Jin-Sup;Hwang, Sook-Mi;Lee, Ryang-Hwa;Kang, Soo-Kyung;Woo, Jae-Suk;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.231-241
    • /
    • 2001
  • The mammalian cortical collecting duct (CCD) plays a major role in regulating renal NaCl reabsorption, which is important in $Na^+$ and $Cl^-$ homeostasis. The M-1 cell line, derived from the mouse cortical collecting duct, has been used as a mammalian model of the study on the electrolytes transport in CCD. M-1 cells were grown on collagen-coated permeable support and short circuit current $(I_{sc})$ was measured. M-1 cells developed amiloride-sensitive current $5{\sim}7$ days after seeding. Apical and basolateral addition of ATP induced increase in $I_{sc}$ in M-1 cells, which was partly retained in $Na^+-free$ or $Cl^--free$ solution, indicating that ATP increased $Na^+$ absorption and $Cl^-$ secretion in M-1 cells. $Cl^-$ secretion was mediated by the activation of apical cystic fibrosis transmembrane regulator (CFTR) chloride channels and $Ca^{2+}-activated$ chloride channels, but $Na^+$ absorption was not mediated by activation of epithelal sodium channel (ENaC). ATP increased cAMP content in M-1 cells. The RT-PCR analysis demonstrated that M-1 cells express $P2Y_2,\;P2X_3\;and\;P2Y_4$ receptors. These results showed that ATP regulates $Na^+$ and $Cl^-$ transports via multiple P2 purinoceptors on the apical and basolateral membranes in M-1 cells.

  • PDF

Gossypin Protects Primary Cultured Rat Cortical Cells from Oxidative Stress- and $\beta$-Amyloid-Induced Toxicity

  • Yoon, Injae;Lee, Kwang-Heun;Choi, Jungsook
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.454-459
    • /
    • 2004
  • The present study investigated the effects of gossypin, 3,3',4',5,7,8-hexahydroxyflavone 8-glucoside, on the toxicity induced by oxidative stress or $\beta$-amyloid ($A_{\beta}$) in primary cultured rat cortical cells. The antioxidant properties of gossypin were also evaluated by cell-free assays. Gossypin was found to inhibit the oxidative neuronal damage induced by xanthinelxanthine oxidase or by a glutathione depleting agent, D,L-buthionine (S,R)-sulfoximine. In addition, gossypin significantly attenuated the neurotoxicity induced by $A_{{\beta}(25-35)}$. Furthermore, gossypin dramatically inhibited lipid peroxidation initiated by $Fe^{2+}$ and ascorbic acid in rat brain homogenates. It also exhibited potent radical scavenging activity generated from 1 ,1-diphenyl-2-picrylhydrazyl. These results indicate that gossypin exerts neuroprotective effects in the cultured cortical cells by inhibiting oxidative stress- and $A_{\beta}$-induced toxicity, and that the antioxidant properties of gossypin may contribute to its neuroprotective actions.

Effect on Varying the Impact Velocity in the Controlled Cortical Impact Injury Model : Injury Severity and Impact Velocity

  • Ji, Yong-Cheol;Min, Byung-Kook;Park, Seung-Won;Hwang, Sung-Nam;Hong, Hyun-Jong;Suk, Jong-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Objective : A study of the histopathologic and neurobehavioral correlates of cortical impact injury produced by increasing impact velocity using the controlled cortical impact[CCI] injury model is studied. Methods : Twenty-four Sprague-Dawley rats [$200{\sim}250g$] were given CCI injury using a pneumatically driven piston. Effect of impact velocity on a 3mm deformation was assessed at 2.5m/sec [n=6], 3.0m/sec [n=6], 3.5m/sec [n=6], and no injury [n=6]. After postoperative 24hours the rats were evaluated using several neurobehavioral tests including the rotarod test, beam-balance performance, and postural reflex test. Contusion volume and histopathologic findings were evaluated for each of the impact velocities. Results : On the rota rod test, all the injured rats exhibited a significant difference compared to the sham-operated rats and increased velocity correlated with increased deficit [p<0.001]. Contusion volume increased with increasing impact velocity. For the 2.5, 3.0, and 3.5m/sec groups, injured volumes were $18.8{\pm}2.3mm^3$, $26.8{\pm}3.1mm^3$, and $32.5{\pm}3.5mm^3$, respectively. In addition, neuronal loss in the hippocampal sub-region increased with increasing impact velocity. In the TUNEL staining, all the injured groups exhibited definitely positive cells at pericontusional area. However, there were no significant differences in the number of positive cells among the injured groups. Conclusion : Cortical impact velocity is a critical parameter in producing cortical contusion. Severity of cortical injury is proportional to increasing impact velocity of cortical injury.

The Gene Expression Profiling in Murine Cortical Cells Undergoing Programmed Cell Death (PCD) Induced by Serum Deprivation

  • Yang, Moon-Hee;Yoo, Kyung-Hyun;Yook, Yeon-Joo;Park, Eun-Young;Jeon, Jeong-Ok;Choi, Seo-Hee;Park, So-Young;Woo, Yu-Mi;Lee, Min-Joo;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.277-285
    • /
    • 2007
  • PCD (programmed cell death) is important mechanism for development, homeostasis and disease. To analyze the gene expression pattern in brain cells undergoing PCD in response to serum deprivation, we analyzed the cDNA microarray consisting of 2,300 genes and 7 housekeeping genes of cortical cells derived from mouse embryonic brain. Cortical cells were induced apoptosis by serum deprivation for 8 hours. We identified 69 up-regulated genes and 21 down-regulated genes in apoptotic cells. Based on the cDNA microarray data four genes were selected and analyzed by RT-PCR and northern blotting. To characterize the role of UNC-51-like kinase (ULK2) gene in PCD, we investigated cell death effect by ULK2. And we examined expression of several genes that related with PCD. Especially GAPDH was increased by ULK2. Theses findings indicated that ULK2 is involved in apoptosis through p53 pathway.

Ultrastructure of Initial Cytological Changes of Cowpea in Root Nodule Formation

  • Kim, Young-Ho;Cheon, Choong-ll
    • The Plant Pathology Journal
    • /
    • v.15 no.2
    • /
    • pp.127-130
    • /
    • 1999
  • Cytological changes of cowpea root at the early stage of root nodule formation (within 5 days after inoculation) were viewed by light and electron microscopy. The root region affected by the rhizobial infection, which was composed of a redial array of cortical cells, had prominent cell divisions, mostly anticlinal in the inner cortical cells and in addition oblique and periclinal in the outer cells. An infected root hair cell (or root hair-producing epidermal cell) had numerous infection threads and degenerated cytoplasm. Module meristem was formed adjacent to the infected root hair cell, and characterized by dense cytoplasm, prominent nucleus, numerous small vacuoles, and increased plastids, containing infection threads as well. Bacterial cells were dividing inside the infection thread, the wall materials of which appeared to be dissolved ad accumulated in small vacuoles. inner cortical cells contiguous to the nodule meristem appeared to be actively dividing and dedifferentiating; however, they were not infected by the rhizobia. These structural characteristics are similar to those in the Bradyrhizobium-soybean association previously reported, and may reflect the similar cytological process in cowpea in the early nodule formation.

  • PDF

Anatomical Differentiation and Photosynthetic Adaptation in Brown Algae

  • Garbary, David J.;Kim, Kwang-Young
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.233-238
    • /
    • 2005
  • The photosynthetic parameters of dark- adapted minimum fluorescence (Fo) and maximum quantum yield of charge separation in PSII (Fv/Fm) were measured in transverse sections of eight species of marine Phaeophyceae (species of Laminariales, Fucales, Desmarestiales, Chordariales) using pulse amplified modulation (PAM) fluorometry. Within each transverse section fluorescence was measured in three regions corresponding to outer cortical and meristoderm cells, inner cortical cells and innermost medullary cells. Minimum fluorescence declined from 19-74% (mean of 39%) from outermost to innermost cells. Maximum quantum yield varied from 0.51-0.59 in outermost cell layers and this was reduced to 0.23-0.40 in innermost cell layers, with an average reduction of 50%. Despite the reduction Fo in medullary cells (inner), medullas of all species showed maximum quantum yields consistent with a photosynthetic role in carbon fixation. These results show that medullary cells of complex brown algae have more than a role in structure, storage or transport, and may also provide an important role in carbon fixation.

Distinct Effect of Neurotrophins Delivered Simultaneously by an Adenoviral Vector on Neurite Outgrowth of Neural Precursor Cells from Different Regions of the Brain

  • Yoo, Min-Joo;Joung, In-Sil;Han, Ah-Mi;Yoon, Hye-Hyun;KimKwon, Yun-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2033-2041
    • /
    • 2007
  • For many years, it has been demonstrated that neurotrophins regulate the adult nervous system, implicating their potential as therapeutic agents for the treatment of neurodegenerative diseases. We generated adenoviral vectors encoding brain-derived neutotrophin factor (BDNF) and neurotrophin-3 (NT3) and tested either separately or together for the ability to induce differentiation of neuronal precursor cells with two different origins. Separate transduction of adenovirus delivering BDNF (BDNF-Ad) or NT3 (NT3-Ad) induced the neuronal differentiation in hippocampal and cortical precursor cells. NT3-Ad infected cells extended short neurites, whereas BDNF-Ad infected cells had longer neurites. In the early differentiation of hippocampal precursor cells, simultaneous infection of BDNF-Ad and NT3-Ad promoted further differentiation and neurite elongation compared with the separate infection of each virus. In contrast, simultaneous infection did not show the synergistic effect in the cortical precursor cells, suggesting that the neurotrophins play distinct roles in different regions of the brain. However, the numbers of neurites and spines per differentiated cells were markedly increased in cortical as well as hippocampal precursor cells, indicating the promotion of efficient neurite elongation and formation of dendritic spine, when BDNF-Ad and NT3-Ad were co-infected. These results suggest more studies in the effect of a combinatorial use of neurotrophins on different sites of brain need to be carried out to develop gene therapy protocols for neurodegenerative diseases.