• Title/Summary/Keyword: Cortex-M4

Search Result 274, Processing Time 0.027 seconds

Anti-inflammatory effects of herbal medicines(Rubus coreanus, Rehmanniae Radix, Houttuynia cordata, Betulae cortex) EtOH extract on acute atopic dermatitis mice (급성 아토피 피부염 마우스 모델에서 한약조합약물의 염증반응 진정효과)

  • Jung, Jae-Hoon;Kim, Gyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.1
    • /
    • pp.68-84
    • /
    • 2015
  • Object : The object of this study was effected of composed of 4 herbal medicines(Rubus coreanus, Rehmanniae Radix, Houttuynia cordata, Betulae cortex) on acute atopic dermatitis mice. Methods : BALB/c mice were divided 4 groups ; normal group, negative control group of acute atopic dermatitis mice induced by DNCB, treated apply to the back skin with the herbal medicine group, and treated orally with herbal medicine group. Treated with herbal medicine and DNCB during 2 weeks. After treated, measured WBCs, RBCs, and platelet in the blood, and analysed mRNA expression of spleen. Result : Composed herbal medicines could reduce WBCs, lymphocytes, monocytes, neutrophils, and eosinophils in the mouse blood. And, could down TNF-${\alpha}$ levels in spleen. In the skin tissue histology results, herbal medicines reduce the cells and T cells. Conclusion : Composed herbal medicines help to another inflammatory disease because they reduce the cells and T cells in the skin tissues. And they have inhibitory effects of TNF-${\alpha}$ mRNA expression, and Th 2 immune responses. Therefore herbal medicines use for an acute atopic dermatitis treatment.

Effects of Forsythiae Fructus, Ulmi Cortex and JwaGwiEum in Allergic Rhinitis Induced by Ovalbumin in Mice (난알부민으로 유발된 생쥐의 알레르기 비염에 연교, 유근피, 좌귀음이 미치는 영향)

  • Kim, Bit Na Rae
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.34-47
    • /
    • 2017
  • Objectives In the past, studies have been shown that Forsythiae Fructus (FF), Ulmi Cortex (UC) and JwaGwiEum (JGE) are effective in treating allergic reactions. However, no report shows the difference in effects of FF, UC and JGE in allergic rhinitis (AR). Therefore, the purpose of this study was to differentiate the effects of FF, UC and JGE in AR induced by ovalbumin (OVA) in mice. Methods From this experiment, the effects of FF, UC and JGE were several - changes in body weight, hematologic changes such as WBC, RBC, Hb and PLT counts, immunological changes such as levels of histamine, IgE, IL-4 and expressions of iNOS & COX-2 mRNA. Moreover, histological change of nasal mucosa was also investigated. Results FF administration group and JGE administration group significantly inhibited level of IgE compared to the control group. Also, FF administration group, UC administration group and JGE administration group inhibited IL-4 and expressions of iNOS & COX-2 mRNA. In histological assessment, FF administration group, UC administration group and JGE administration group showed reduced amount of subepithelial edema, desquamated mucosa and hyperplasia of basement membrane from OVA.

Optimized Implementation of CSIDH-512 through Three-Level Hybrid Montgomery Reduction on ARM Cortex-M7 (Three-level 하이브리드 몽고메리 감산을 통한 ARM Cortex-M7에서의 CSIDH-512 최적화)

  • Younglok Choi;Donghoe Heo;Seokhie Hong;Suhri Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.243-252
    • /
    • 2023
  • As an efficient key recovery attack on SIDH/SIKE was proposed, CSIDH is drawing attention again. CSIDH is an isogeny-based key exchange algorithm that is safe against known attacks to date, and provide efficient NIKE by modernizing CRS scheme. In this paper, we firstly present the optimized implementation of CSIDH-512 on ARM Cortex-M7. We use three-level hybrid Montgomery reduction and present the results of our implementation, limitations, and future research directions. This is a CSIDH implementation in 32-bit embedded devices that has not been previously presented, and it is expected that the results of this paper will be available to implement CSIDH and derived cryptographic algorithms in various embedded environments in the future.

Protective Effect of Cortex Fraxini on Heart Injury in a Rat Model of Myocardial Infarction (흰쥐를 이용한 심근경색모델에서 진피(秦皮)의 심장손상 보호효과)

  • Lim, Sun-Ha;Lee, Jong-Won
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.149-154
    • /
    • 2011
  • Objectives : Myocardial infarction is caused by heart cell death in a region where coronary arteries supplying blood to the region are occluded. In the present study, we determined whether ethanol extract of Cortex fraxini (HY5053) could attenuate heart injury by inhibiting apoptosis. Methods : Improvement of survival of HepG2 cells, a human hepatocellular carcinoma cell line, and reduction of apoptosis under hypoxic conditions (3% $O_2$) were assessed by trypan blue staining and DNA fragmentation assay, respectively. To assess the impact of HY5053 on the heart injury, Sprague-Dawley rats underwent 1 day of the left anterior descending coronary artery occlusion. HY5053 was given by intraperitoneal injection (200 mg/kg) 1 hr prior to the occlusion. Subsequently, the heart were harvested, excised into 4 slices, and the slices were stained with 2,3,5-triphenyl tetrazolium chloride. Finally, the extent of heart injury represented as ischemic index (%) was assessed. Results : Addition of HY5053 (400 ${\mu}g$/mL) into the culture medium for 1 day under ischemic conditions improved the cell survival by 50%, compared with control (0 ${\mu}g$/mL), consequently delayed apoptosis in 6 hr difference. Also, HY5053 (200 mg/kg) reduced the ischemic index by 44%, compared with control (0 mg/kg). Conclusions : These findings suggested that HY5053 attenuated myocardial infarction by inhibiting apoptosis. Thus, Cortex fraxini could be developed as a novel cardioprotectant to complement a currently available treatment, coronary angioplasty.

The Effects of Magnoliae officinalis Cortex and Machili thunbergii Cortex on Small Intestinal Motility (후박(厚朴)과 토후박(土厚朴)의 소장운동에 미치는 영향에 대한 연구)

  • Lee, Kyung-Jin;Park, Geun-Yong;Park, Gyu-Ha;Liu, Kwang-Hyeon;Kim, Tae-Wan;Ham, In-Hye;Bu, Young-Min;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.75-81
    • /
    • 2011
  • Objectives : Magnoliae officinalis Cortex (MOC) has been used in traditional medicine for digestive diseases in Korea, China and Japan. However, Machili thunbergii Cortex (MTC) also has been used as a substitute of MOC in Korea sometimes. Thus, this study was carried out to investigate and compare the effects of MOC and MTC on intestinal motility of isolated small intestinal segments from ICR mouse. Methods : Changes in motility were recorded via isometric transducers connected to a data acquisition system and amplitude, frequency and area under the curve (AUC) of intestinal spontaneous phasic contraction were compared. Results : The MOC extracts ($1{\sim}{\mu}g/mL$) dose-dependently decreased both amplitudes and frequencies of the spontaneous phasic contraction, but not AUC. However, high concentration of MOC (100 ${\mu}g$/mL) evoked tonic contraction. And it was not inhibited by tetrodotoxin, a sodium channel blocker, and nifedipine, a L-type $Ca^{2+}$ channel antagonist. These results suggested that MOC (100 ${\mu}g$/mL)-induced tonic contraction is not mediated by nerve or L-type $Ca^{2+}$ channel. On the other hand, the MTC extracts dose-dependently inhibited amplitude and AUC, but not the frequency. Conclusions : Although both MOC and MTC affected intestinal motility, MOC is more effective on intestinal motility than MTC. And MOC has been used as a traditional medicine for a long time but not MTC. Thus, we suggested that MTC should not be used in Korea as a substitute of MOC and MOC might be useful traditional medicine for gastrointestinal disease. The mechanism of MOC is still remained to elucidate.

Changes in Sensory Function After Transcranial Direct Current Stimulation on Primary Motor Cortex Area

  • Min, Dong-Ki
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity direct current to cortical areas, thereby facilitating or inhibiting spontaneous neuronal activity. This study was designed to investigate changes in various sensory functions after tDCS. We conducted a single-center, single-blinded, randomized trial to determine the effect of a single session of tDCS with the current perception threshold (CPT) in 50 healthy volunteers. Nerve conduction studies were performed in relation to the median sensory and motor nerves on the dominant hand to discriminate peripheral nerve lesions. The subjects received anodal tDCS with 1 mA for 15 minutes under two different conditions, with 25 subjects in each groups: the conditions were as follows tDCS on the primary motor cortex (M1) and sham tDCS on M1. We recorded the parameters of the CPT a with Neurometer$^{(R)}$ at frequencies of 2000, 250, and 5 Hz in the dominant index finger to assess the tactile sense, fast pain and slow pain, respectively. In the test to measure CPT values of the M1 in the tDCS group, the values of the distal part of the distal interphalangeal joint of the second finger statistically increased in all of 2000 Hz (p=.000), 250 Hz (p=.002), and 5 Hz (p=.008). However, the values of the sham tDCS group decreased in all of 2000 Hz (p=.285), 250 Hz (p=.552), and 5 Hz (p=.062), and were not statistically significant. These results show that M1 anodal tDCS can modulate sensory perception and pain thresholds in healthy adult volunteers. The study suggests that tDCS may be a useful strategy for treating central neurogenic pain in rehabilitation medicine.

Medial prefrontal cortex nitric oxide modulates neuropathic pain behavior through mu opioid receptors in rats

  • Raisian, Dorsa;Erfanparast, Amir;Tamaddonfard, Esmaeal;Soltanalinejad-Taghiabad, Farhad
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Background: The neocortex, including the medial prefrontal cortex (mPFC), contains many neurons expressing nitric oxide synthase (NOS). In addition, increasing evidence shows that the nitric oxide (NO) and opioid systems interact in the brain. However, there have been no studies on the interaction of the opioid and NO systems in the mPFC. The objective of this study was to investigate the effects of administrating L-arginine (L-Arg, a precursor of NO) and N(gamma)-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOS) into the mPFC for neuropathic pain in rats. Also, we used selective opioid receptor antagonists to clarify the possible participation of the opioid mechanism. Methods: Complete transection of the peroneal and tibial branches of the sciatic nerve was applied to induce neuropathic pain, and seven days later, the mPFC was cannulated bilaterally. The paw withdrawal threshold fifty percent (50% PWT) was recorded on the 14th day. Results: Microinjection of L-Arg (2.87, 11.5 and 45.92 nmol per 0.25 µL) increased 50% PWT. L-NAME (17.15 nmol per 0.25 µL) and naloxonazine (an antagonist of mu opioid receptors, 1.54 nmol per 0.25 µL) inhibited anti-allodynia induced by L-Arg (45.92 nmol per 0.25 µL). Naltrindole (a delta opioid receptor antagonist, 2.45 nmol per 0.25 µL) and nor-binaltorphimine (a kappa opioid receptor antagonist, 1.36 nmol per 0.25 µL) were unable to prevent L-Arg (45.92 nmol per 0.25 µL)-induced antiallodynia. Conclusions: Our results indicate that the NO system in the mPFC regulates neuropathic pain. Mu opioid receptors of this area might participate in pain relief caused by L-Arg.

Antiplatelet fraction from Ulmi cortex and its active components (유백피의 항혈전 활성 분획 및 유효성분에 관한 연구)

  • Kim, Dong-Seon;Yang, Won-Kyung;Sung, Yoon-Young;Lim, Sun Mi;Kim, Ho Kyoung
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.39-44
    • /
    • 2013
  • Objectives : The purpose of this study was to identify active fraction and components from antiplatelet Ulmi cortex extract. Methods : The 70% ethanol extract of Ulmi cortex was subjected to column chromatography over D101 resin and eluted with an 20% (W1), 30% (W2), 40% (W3), 50%(W4), 70% (W5), and 100% ethanol (W6) to yield 6 fractions. W6 was further fractioned and its active components were purified using semi-preparative HPLC. The isolated compounds were identified by MS and NMR, and their contents were simultaneously analyzed using HPLC/UV. Antiplatelet aggregation activities of the fractions and the compounds were evaluated using rat platelet-rich plasma in presence of collagen ($5{\mu}g/ml$), arachidonic acid (0.05 U/ml), or thrombin ($100{\mu}M$). Results : Among six fractions, W3 prominently inhibited platelet aggregation. At the concentration of $200{\mu}g/ml$, W3 strongly inhibited arachidonic acid- and collagen-induced platelet aggregations by 78.2% and 65.9%, respectivley, and weakly inhibited thrombin-inducded platelet aggregation by 32.6%. Catechin, epicatehin, and catechin-7-O-${\beta}$-D-glucopyranoside were isolated from W3 and their contents were revealed to be 15.1%, 0.87%, and 0.32%. Catechin and epicatechin at the concentrations of $100{\mu}M$ strongly inhibited collagen-induced platelet aggregation by 79.9% and 86.6%, respectively, but weakly inhibited arachidonic acid- and thrombin-induced platelet aggregations. Conclusions : A main active principle of anitplatelet Ulmi Cortex extract is W3 fraction, of which main active component is catechin considering its antiplatelet activity and content.

Tissue Regenerative activity of Zea Mays L. and Magnoliae cortex extract mixtures (옥수수(Zea Mays L.) 불검화 추출물과 후박(Magnoliae cortex) 추출물의 혼합물이 백서의 두개골 재생에 미치는 영향)

  • Kim, Tae-Il;Rhyu, In-Cheol;Chung, Chong-Pyoung;Lee, Yong-Moo;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.403-414
    • /
    • 2002
  • I. Purpose of Study Zea Mays L. has been known to be effective for improving periodontal health and Magnoliae cortex to have effective antibacterial and antimicrobial activity against periodontal pathogens. The purpose of this study was to examine the biologic effects of Zea Mays L. and Magnoliae cortex extract mixtures on healing of rat calvarial bone defects. II. Materials & Methods 8mm circular defects were prepared on rat calvaria during surgical procedures of 180 Sprague-Dawley rats. The ethanolic extracts of Magnoliae cortex and Zea Mays L. and these two natural extract 1:1 and 2:1 (Magnoliae: Zea Mays L.) ratio mixtures were oral administrated by oral zondes once a day at two different dose of 94.5mg/kg, 189mg/kg body weight. There are nine groups of rats in this study: control group (no sample loading), Magnoliae cortex extract loading groups (I,II)(94.5mg/kg,189mg/kg respectively), Zea Mays L. extract loading groups (I,II), M:Z(1:1) loading groups (I,II), M:Z(2:1) loading groups(I,II). Rats were sacrificed at 4 weeks and 6 weeks after surgery. New bone formations around calvarial defects were radiographically and histologically measured by computerassisted histomorphometry. Each data was statistically analyzed by One-way ANOVA test. III. Results There were statistical significances between negative control group and the other test groups on radiographical and histological quantitative assessments. Among test groups, mixture groups showed statistical significances, especially, M:Z (2:1) groups (I and II) were highly significant.(p<0.05) These results implicated that the mixture of Magnoliae and Zea Mays L. (2:1 mixing ratio) with 94.5mg/kg concentration might be highly effective on the wound healing of bony defected site and have potential possibilities as a useful drug to promote bone tissue regeneration.

Adipocyte Differentiation Inhibitor Isolated from the Barks of Phellodendron amurense (황백(Phellodendri Cortex)으로부터 분리한 지방세포 분화 저해물질)

  • Kim, Kyung-Hee;Ahn, Soon-Cheol;Lee, Myung-Sun;Kweon, Oh-Song;Oh, Won-Keun;Kim, Min-Soo;Sohn, Cheon-Bae;Ahn, Jong-Seog
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.503-509
    • /
    • 2003
  • For the development of the anti-obesity natural drug, the inhibitor of adipocyte differentiation was screened from Korean traditional medicinal plants. Phellodendri Cortex was selected as a candidate of adipocyte differentiation inhibitor. An inhibitory compound PC-4 was purified from the methanol (MeOH) extract of Phellodendri Cortex using silica gel and ODS RP-18 column chromatography and HPLC. PC-4 was obtained as yellow powder; UV ${\lambda}_{max}$ (MeOH): 230, 260, 340 and 430 nm. The chemical structure of PC-4 was determined as an isoquionoline alkaloid, berberine, on the basis of various NMR experiments including $^1H-\;and\;^{13}C-NMR$. The PC-4 inhibited the differentiation of preadipocyte NIH-3T3 L1 cells at a concentration of $1\;{\mu}g/mL$.