• Title/Summary/Keyword: Corrugation Structure

Search Result 30, Processing Time 0.021 seconds

Effect of corrugation structure and shape on the mechanical stiffness of the diaphragm

  • Kim, Junsoo;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.273-278
    • /
    • 2021
  • Here, we studied the change in the mechanical stiffness of a diaphragm according to the corrugation pattern. The diaphragm consists of a silicon oxide and nitride double layer; a corrugation pattern was formed by dry etching, and the diaphragm was released by wet etching. The fabrication of the thin film was verified using focused ion beam and scanning electron microscopy images. The mechanical stiffness of the diaphragm was obtained by measuring the surface vibration using a laser Doppler vibrometer while applying external sound pressure. Flat squares, diaphragms with square corrugations, and circular corrugation patterns were measured and compared. The stiffness of the diaphragm with a corrugation structure was found to be smaller than that without a corrugation structure; in particular, circular corrugation showed a better effect because of the high symmetry. Furthermore, the effect of corrugation was theoretically predicted. The proposed corrugated diaphragm showed comparable flexibility with the state-of-the-art MEMS microphone diaphragm.

Radial deformation and band-gap modulation of pressurized carbon nanotubes

  • Taira, Hisao;Shima, Hiroyuki;Umeno, Yoshitaka;Sato, Motohiro
    • Coupled systems mechanics
    • /
    • v.2 no.2
    • /
    • pp.147-157
    • /
    • 2013
  • We numerically investigate the electronic band structure of carbon nanotubes (CNTs) under radial corrugation. Hydrostatic pressure application to CNTs leads to a circumferential wave-like deformation of their initially circular cross-sections, called radial corrugations. Tight-binding calculation was performed to determine the band gap energy as a function of the amplitude of the radial corrugation. We found that the band gap increased with increasing radial corrugation amplitude; then, the gap started to decline at a critical amplitude and finally vanished. This non-monotonic gap variation indicated the metal-semiconductor-metal transition of CNTs with increasing corrugation amplitude. Our results provide a better insight into the structure-property relation of CNTs, thus advancing the CNT-based device development.

Study of Effective Stiffness and Effective Strength for a Pinwheel Model combined with Diamond Truss-Wall Corrugation (P-TDC) (다이아몬드 트러스 벽면으로 구성된 P-TDC 모델의 강성 및 강도 연구)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.109-124
    • /
    • 2016
  • The objective of this paper is to find the density, stiffness, and strength of truss-wall diamond corrugation model combined with pinwheel truss inside space. The truss-wall diamond corrugation (TDC) model is defined as a unit cell coming from solid-wall diamond corrugation (SDC) model. Pinwheel truss-wall diamond corrugation (P-TDC) model is made by TDC connected with pinwheel structure inside of the space. Derived ideal solutions of P-TDC is based on truss-wall and pinwheel truss model at first. And then it is compared with Gibson-Ashby's ideal solution. To validate the ideal solutions of the P-TDC, ABAQUS software is used to predict the density, strength, and stiffness, and then each of them are compared to the ideal solution of Gibson-Ashby with a log-log scale. Applied material property is stainless steel 304 because of having cost effectiveness. Applied parameters for P-TDC are 1 thru 5 mm diameter within fixed opening width as 4mm. In conclusion, the relative Young's modulus and relative yield strength of the P-TDC unit model is reasonable matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, P-TDC model is hoped to be applied to make sandwich core structure by advanced technologies such as 3D printing skills.

Radiation Characteristics of Dielectric-Coated Conducting Cylinder Loaded with Periodic Corrugation (주기적인 구형격자로 로딩된 유전체 코팅된 도체 실린더의 복사 특성)

  • Kim, Joong-Pyo;Son, Hyon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.388-402
    • /
    • 2000
  • The radiation characteristics of leaky antenna from the dielectric-coated conducting cylinder with periodic corrugation are investigated theoretically for the infinite and finite periodic structures. For the infinite periodic structure, mode-matching method is applied. The integral equation is derived for the finite periodic structure by use of the Fourier transform and mode expansion and a simultaneous linear equation is obtained. The influences of the corrugation slot width, corrugation depth, dielectric thickness, cylinder radius, and finite corrugation number on the radiation characteristics (leakage constant, phase constant, and radiation pattern) are investigated. The results of the finite periodic corrugations are compared with those of the infinite extent structure and good agreement is found. To reduce high side lobe levels of the uniform finite periodic structure, tapering process on the beginning and end section of antenna and nonuniform quasi-period slot arrays are considered. Especially, for the corrugation period, width and depth used for a corrugated surface wave antenna, through the proper tapering process, end-fire radiation pattern with reduced side lobe levels is given.

  • PDF

Air Flow Sensor with Corrugation Structure for Low Air Velocity Detection (주름구조를 적용한 저속 유속 센서)

  • Choi, Dae-Keun;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.393-399
    • /
    • 2011
  • In this paper, we designed and fabricated the novel air flow sensor using air drag force, which can be applied to the low air flow detection. To measure the low air flow, we should enlarge the air drag force and the output signal at the given air flow. The paddle structure is applied to the device, and the device is vertically located against the air flow to magnify the air drag force. We also adapt the corrugation structure to improve the output signals on the given air velocity. The device structure is made up of the silicon nitride layer and the output signal is measured with the piezoresistive layer. The output signals from the corrugated device show the better measurement sensitivity and the response time than that of flat one. The repeated measurement also shows the stabilized signals.

Analysis of Annular Corrugated Horn using FDTD (환상 골진 혼 안테나의 FDTD에 의한 해석)

  • 김도현;손병문;구연건
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1067-1075
    • /
    • 2001
  • The fields at the aperture of conical horn antenna with corrugations parallel to the axis have been analyzed using FDTD(Finite Difference Time Domain). Easy calculation depending on the change of the structure of antenna and time reduction can be achieved by 2-D FDTD coding with the first-order Mur ABC(absorbing boundary condition). It is confirmed that the corrugation can reduce phase difference of field on aperture. also it is investigated that the directivity is increased by 6.1 %, 12.9%, and 28.4% with one corrugation, two corrugations, three corrugations, respectively. It is also found that the improvement of the characteristics of the antenna is not proportional to the number of the corrugation but more dependent on the location of the corrugation near the aperture than that far the aperture.

  • PDF

A Study on the Practice Method of Planar Antenna for LMDS (LMDS용 평면형 안테나의 실용화 방안)

  • 이형수;설동범;이윤경;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.474-483
    • /
    • 2000
  • In this paper, the planar LTS and Vibaldi antenna operating at 28 GHz for LMDS is optimized by finite difference time domain(FDTD) method and then fabricated and measured. We designed LTS and Vivaldi antenna with corrugation structure for reducing sidelobe, then these antenna are optimized by FDTD, and then fabricated and measured. In a results of the measured values, sidelobe level of LTS and Vivaldi antenna with corrugation structure is 4 dB lower than that of LTS and Vivaldi antenna.

  • PDF

The Stress Analysis of the Bellows Joint by the Finite Element Method (유한 요소법을 이용한 Bellows Joint의 응력해석)

  • 이완익;김태완
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.61-68
    • /
    • 1987
  • The Bellows Joint which was used as a absorber or safety equipment to prevent the deformation or fracture of a structure, have been analyzed by the F.E.M using axi-symmetric conical frustum element. Using the F.E.M the general behavior of Bellows Joint corrugation can be investigated easily, and the stability of the analysis be guaranteed. In annular type corrugation, the F.E.M results were agreed with those of other theoretical analyses, but in the U type corrugation, the F.E.M results were more acceptable than those of others.

  • PDF

Numerical Analysis on the Stress Behaviours Due to Geometry Effects of the Membrane Corrugation (멤브레인의 주름 형상이 응력거동에 미치는 영향에 관한 수치적 해석)

  • Kim Chung-Kyun;Lee Young-Suck;Cha Baeg-Soon;Kim Young-Gyu;Yoon In Soo;Hong Seong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 1997
  • This paper presents the numerical results of six corrugation models which compute the stress behaviours and stress levels of the membrane structure under the hydrostatic pressure of cryogenic liquids and thermal loadings using a non -linear finite element analysis program. A three-dimensional analysis of various corrugation geometries was performed on the maximum mean normal stress distributions along the upper surface of the membrane sheet. Comparisons of the FEM results for various geometry models of the corrugation are presented, which shows that the corrugated configuration of the ring knot model can be effectively performed for the combined forces such as the hydrostatic pressure and thermal loading in comparison with the Technigaz type corrugation which has small comer and apex curvatures. The FEM results show that the ring knot corrugation can be used for the deepest depth, 180m of the LNG storage tank in comparison with other corrugation models.

  • PDF

On the Damping Effects of Helmet Safety with a Corrugation Damper using Taguchi's Optimization Design (다구찌 설계법을 이용한 주름댐퍼를 갖는 헬멧안전의 감쇠효과에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • Using the finite element method and Taguchi's design technique, the displacement in vertical direction, von Mises stress, and strain energy of the corrugation damper have been analyzed as functions of the extruded length and the thickness of the corrugation damper, and the upper and lower corner radii of the damper. The optimized profile design elements of a corrugation damper are very important for increasing a strain energy absorption capacity of a helmet structure, which is attacked by impulsive external forces. In this study, the optimized design data based on the Taguchi's method was computed as a corrugation damper length of L = 20 mm, a damper thickness of t = 2 mm, the upper corner radius of $R_1=4\;mm$, and the lower corner radius of $R_2=3\;mm$. The optimized design parameters of a corrugation damper indicated that the thickness and extruded length of a corrugation damper may affect to increase the strain energy, which absorbs the impact forces of the helmet.

  • PDF