• Title/Summary/Keyword: Corrugated Fiberboard

Search Result 77, Processing Time 0.017 seconds

Durability of Corrugated Fiberboard Container for Fruit and Vegetables by Vibration Fatigue at Simulated Transportation Environment (모의 수송 환경에서의 청과물 골판지 상자의 진동 피로에 따른 내구성)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.89-94
    • /
    • 2005
  • The compression strength of corrugated fiberboard container for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about from 30 to 40 percent owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard container for packaging the fruit and vegetables under simulated transportation environment. The vibration test system was constructed to simulate the land transportation using truck. After the package with corrugated fiberboard container was vibrated by vibration test system at various experimental conditions, the compression test for the package was performed. The compression strength of corrugated fiberboard container decreased with loading weight and vibrating time. The multiple nonlinear regression equation for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibrating time. The influence of loading weight on the decreasing rate of corrugated fiberboard container was larger than other variables.

Strength Changes of Corrugated Fiberboard Boxes for Fruits Packaging by Relative Humidity Temperature (과실포장용 골판지 상자의 온습도에 따른 강도 변화)

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop;Lee, Myung-Hoon;Sohn, Ki-Zoo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.2
    • /
    • pp.43-51
    • /
    • 2001
  • This study was carried out to analyze changes of the physical properties of corrugated fiberboard boxes for fruits packaging by various moisture and temperature changes. There were significant decrease in burst strength with increased relative humidity. And also compressive strength(ring crush test) of corrugated fiberboard and box were reduced with moisture content. The decreasing amounts of single wall(SW) corrugated fiberboard was bigger than that of double wall(DW). The physical properties reductions of corrugated fiberboard and box were mainly affected by relative humidity. Therefore, it is suggested that development of the water-resistant corrugated fiberboard and box be useful under the condition of low temperature and high relative humidity such as the cold chain system.

  • PDF

Static Cushioning Properties of Corrugated Fiberboard and Creep Behavior of Boxes (골판지의 정적완충특성과 골판지상자의 크리이프 거동)

  • 박종민;김만수;정성원
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-332
    • /
    • 1995
  • The horizontal compression test of some selected corrugated fiberboards was performed to determine the cushioning properties of them. Creep behavior of the corrugated fiberboard boxes, which have been widely used in rural area for packaging fruits and vegetables, was tested. The flute crushing stress of the corrugated fiberboard depended upon mainly the basic weight of the corrugated medium, comparing with the combined basic weight of corrugated fiberboard. When moisture content of the corrugated fiberboards was increased about 8% (d.b.), the flute crushing stress of them was decreased at the rate of 44%~64%. The cushion factor of the sample fiberboards showed much higher value at the lower moisture content of them. These trends appeared to be more obvious at the lower applied stress levels. Also, the cushion factors of the double wall corrugated fiberboards(DW) were observed to be little higher than those of the single wall corrugated fiberboards(SW). The creep behavior of the sample boxes was found to be highly moisture and static load dependent. The creep behavior of the corrugated fiberboard boxes could be well analyzed by the asymptotic slope derived from the creep model.

  • PDF

Evaluation Methods for Flat Crush Resistance of Corrugated Fiberboard with Microflutes

  • Youn, Hye-Jung;Kwon, Hyun-Seung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • Corrugated fiberboard is a widely used packaging material because of its high compressive strength and stiffness despite light weight. Corrugated fiberboards with microflutes with height $\leq$ 1.5 mm, such as E, F or G, have been developed. As microflutes have a different geometry from other conventional flutes, they may behave differently in testing and require a new testing method. Therefore, we evaluated the flat crush resistance of corrugated fiberboard with microflutes according to the ISO and TAPPI standard test methods. In addition, the effects of specimen area and platen compression rate were examined. The goal of this study was to identify an appropriate method for flat crush test (FCT) of corrugated fiberboard with microflutes. When a test piece with a standard area was subjected to the FCT in accordance with ISO and TAPPI methods, microflute corrugated fiberboard demonstrated a different load-displacement curve. An area of 20 $cm^2$ was determined to be the most appropriate for FCTof microflute corrugated fiberboard.

Effects of Sinusoidal Vibration Fatigue on Compression Strength of Corrugated Fiberboard Container for Packaging of Fruits

  • Jung, Hyun-Mo;Kim, Jong-Kyoung;Kim, Man-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • The compression strength of corrugated fiberboard containers for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about 30~40% owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard containers for packaging the fruits and vegetables under simulated transportation environment. After the packaging freight was vibrated at various experimental conditions, the compression test for the packaging was performed. The compression strength of corrugated fiberboard containers decreased with loading weight and vibration time. The multiple nonlinear regression equation ($R^2$ = 0.9198) for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibration time.

  • PDF

Evaluation of Edgewise Compressive Strength of Corrugated Fiberboard with Microflute

  • Youn, Hye-Jung;Lee, Hak-Lae;Kim, Ji-Yong;Kwon, Hyun-Seung;Chin, Seong-Min
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.52-57
    • /
    • 2007
  • Corrugated fiberboard is a representative packaging material because of high compressive strength and stiffness in spite of light weight. The flutes of corrugated fiberboard are various depending on the height and the number per unit length of flute. The corrugated fiberboard with microflute like E, F or G with low height less than 1.5 mm has developed. Because it has some advantages including higher stiffness and lower requirement of fiber than carton board, it has a possibility to replace folding box board. Its consumption has been increased with the various applications like graphic packaging. As microflute has the different geometry from other conventional flutes, it can show the different behavior in testing and it may require a new testing method. In this study, we evaluated the edgewise compressive strength of the corrugated fiberboard with microflute according to ISO and other standard test methods. And the effect of specimen shape and platen compression rate was examined. From this study, we found that ISO methods was suitable and reasonable methods for corrugated fiberboard with microflute.

Study on Development of a Corrugated Packaging Box for Cold-chain Distribution (I) - Characteristics of moisture absorption to corrugated fiberboard - (저온유통용 골판지 포장상자 개발에 관한 연구(I) - 골판지의 흡습특성 시험 -)

  • Lee, Won-Og;Yun, Hong-Sun;Jeong, Hoon;Lee, Hyun-Dong;Cho, Kwang-Hwan;Kim, Man-Soo
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.297-301
    • /
    • 2003
  • The hardness of corrugated packaging box decreased during storage period because of high humidity. Therefore, the strength-decreasing factor of corrugated packaging box had to be investigated to determine the compression strength of the corrugated packaging box. This study was conducted to define the characteristics of moisture absorption as well as compression strength of corrugated fiberboard. (1) The moisture content of the corrugated fiberboard was rarely influenced by the kinds of raw materials and water repellent. However, the moisture adsorption of the corrugated fiberboard was shown to be clearly affected by air temperature changes. (2) The moisture content of the corrugated fiberboard was significantly affected by relative humidity. The moisture adsorption of corrugated fiberboard was also greatly influenced by composition of raw materials rather than water repellent. The results indicated that the improvement of raw materials was more effective than the increase of water repellent of corrugated fiberboard to reduce the moisture adsorption of the corrugated fiberboard. (3) The vertical compression strength was significantly decreased with increasing relative humidity. The reduction rate of vertical compression strength was not charged with the increase of relative humidity, which was regardless of kinds of corrugated fiberboard. (4) For improving the strength of the corrugated packaging box, new technique should be found to develop better quality of raw materials. Moreover, the physical construction of corrugated packaging box should be clearly understood because the corrugated packaging box for the agricultural products was usually used for the circumstances of high humidity and low air temperature

Changes of the Physical Properties of Corrugated Fiberboard Boxes for Fruit and Vegetable Packaging by Preservation Temperature and Relative Humidity (과채류 포장용 골판지 상자의 저장온도와 습도에 따른 물리적 특성 변화)

  • Lee, Myung-Hoon;Cho, Jung-Yeon;Shin, Jun-Seop
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • This study was carried out to analyze the effects of preservation temperature and relative humidity to the physical properties of corrugated fiberboard boxes for fruit and vegetable packaging. The preservation temperature did not affect severely to physical properties of corrugated fiber-board. Relative humidity was a major cause of corrugated fiberboard box quality deterioration. The burst and compressive strengths of experimental boxes measured with Mullen high pressure tester and tong crush tester were decreased gradually as relative humidity increased from 55% to 75%. But, the strength properties slightly decreased relative humidity at 75% or higher. This tendency was the greater for single wall (SW) corrugated fiberboard box than that for double wall (DW). It is suggested that development of the water-resistant corrugated fiberboard and box be needed that can be used under the condition of low temperature and high moisture content, which are being employed in the cold chain system.

Effect of Relative Humidity and Temperature on the Compression Strength of Corrugated Boxes on Distribution Channel (유통중 온습도 변화에 따른 골판지 상자의 압축강도에 대한 연구)

  • 이명훈;김종경
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.33-38
    • /
    • 2003
  • In order to design the high strength corrugated fiberboard containers for agricultural products that can be used for the cold chain system, a large number of individual boxes were placed in various humidity environments at two different temperature of 5 and $20^{\circ}C$. The results indicated that temperature changes do not effect on physical strength of corrugated fiberboard containers as much as humidity changes did. The main conclusion from this study was that compression strength of corrugated fiberboard containers dropped significantly at high humidity condition, but the rates varied depending on the number of walls, temperature, and perimeter of containers. The packaging designer must consider the corrugated fiberboard boxes are also greatly affected by dimensional variations such as the length versus width ratio. Based on this study, water-resistant board would not be necessary if the ambient relative humidity does not reach to a critical point, 85 percent in the cold chain system. However, the designer must count for the unexpected fluctuation of rotative humidity resulting in severe loss of the compression strength of corrugated fiberboard container.

Effects of Vibration Fatigue on Compression Strength of Corrugated Fiberboard Containers for Packaging of Fruits during Transport

  • Jung, Hyun-Mo;Park, Jeong-Gil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2012
  • Purpose: The compression strength of corrugated fiberboard containers used to package agricultural products rapidly decreases owing to various environmental factors encountered during the distribution of unitized products. The main factors affecting compression strength are moisture absorption, long-term top load, and fatigue caused by shock and vibration during transport. This study characterized the durability of corrugated fiberboard containers for packaging fruits and vegetables under simulated transportation conditions. Methods: Compression tests were done after corrugated fiberboard containers containing fruit were vibrated by an electro-dynamic vibration test system using the power spectral density of routes typically traveled to transport fruits and vegetables in South Korea. Results: To predict loss of compression strength owing to vibration fatigue, a multiple nonlinear regression equation ($r^2=0.9217$, $RMSE=0.6347$) was developed using three independent variables of initial container compression strength, namely top stacked weight, loading weight, and vibration time. To test the applicability of our model, we compared our experimental results with those obtained during a road test in which peaches were transported in corrugated containers. Conclusions: The comparison revealed a highly significant ($p{\leq}0.05$) relationship between the experimental and road-test results.