• Title/Summary/Keyword: Corrosiveness

Search Result 40, Processing Time 0.024 seconds

Evaluation of Ignition Performance of Green Hypergolic Propellant (친환경 접촉점화 추진제 점화 성능 평가)

  • Sunjin Kim;Minkyu Shin;Jeongyeol Cha;youngsung Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Hypergolic propellants, which can ignite themselves without an ignition source, are difficult to handle due to their corrosiveness and toxicity. Therefore, it is necessary to develop green hypergolic propellants with little or no toxicity. In this study, basic research on green hypergolic ignition propellants was conducted. With 95% hydrogen peroxide as an oxidizer and CNU_HGFv1 as a fuel, ignition and combustion characteristics of propellants were evaluated through a drop test, an ignition test, and a combustion test. As a result of the drop test, the ignition delay time was 9.7 ms. It was 27 ms in the ignition test, which was fast enough to be used as a propellant. As a result of the combustion test, a combustion efficiency of 95.4~98.1% was achieved at about 11.7 bar. It was confirmed that fast and stable combustion was possible without hard start or combustion instability.

Research of Corrosion Control Technology for the Product Water of SWRO(Seawater Reverse Osmosis) by using liquid lime (액상소석회를 이용한 SWRO 생산수의 부식제어 연구)

  • Kim, Min-Chul;Hwang, Kyu-Won;Woo, Dal-Sik;Yoon, Seok-Min;Kwak, Myung-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.529-536
    • /
    • 2011
  • In this study, we confirmed that the SWRO(Sea Water Reverse Osmosis) production water has more hard corrosiveness than the tap water by fundamental experiment. According to the result, the target of this study was aimed at developing maintenance and anti-corrosion method. In the early stages of the research, batch tests using mild steel coupons and electrochemical experiments were applied to compare the corrosiveness between SWRO production water and the tap water. After then, two corrosion control methods for SWRO production water were applied. Liquid lime($Ca(OH)_2$) and Carbon Dioxide($CO_2$) were inserted and compared with the combination of liquid lime with phosphate corrosion inhibitor and carbon dioxide. The water qualities were evaluated through LSI(Langelier Saturation Index) and proper injection ratio was deduced by the result. Since then, simulated loop system test were performed to evaluate anti-corrosion effect depending on corrosion inhibitors. Subsequently, carbon steel pipes equipped at the loop system were detached for SEM, EDX and XRD analysis to acquire quantitative and qualitative data of the major corrosion products inside the pipes. In conclusion, the controled groups with anti-corrosion techniques applied were effective by appearing 97.4% and 90.9% of improvements in both case of liquid lime and the liquid lime with a phosphate corrosion Inhibitor. furthermore, major components of scale were iron oxides, on the other hand, protective effect of film formation by calcium carbonate($CaCO_3$) could be confirmed.

Corrosion control technique for pipeline system through injecting water stabilizer (수질안정화 약품 주입에 따른 상수도관 내부 부식제어 특성 연구)

  • Hwang, Byung-Gi;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.545-551
    • /
    • 2011
  • Recently, demands for generating high quality tap waters are increasing with high concern of water pollution and corrosion of water pipelines. For the reasons, developing water quality stabilization technique in water purification system is sought rather than replacing to a new pipelines. In this study, high-purity liquid lime($Ca(OH)_2$) was introduced for a water quality stabilization technique in water purification process and simulated water distribution system of pilot-scale size was applied to evaluate anti-corrosion control effect. The effect of anti-corrosion control was calculated in terms of LSI(Langelier Saturation Index) In conclusion, the result of pilot plant showed improvement of corrosiveness by liquid lime($Ca(OH)_2$) with reduction of released iron(Fe). Application of anti-corrosion control technique to the mild steel coupon and the copper coupon were effective by indicating 35.4, 44.5% of improvements. Besides, sample pipes which were treated with liquid lime had formated more thicker layer of corrosion product inside of pipes. As a result, the process of injecting water stabilizer can greatly contribute to the high quality of tap water.

Assessment of external corrosion deterioration of large diameter metallic water pipes buried in reclaimed land (간척지대에 매설된 대구경 금속관의 외면 부식손상 평가)

  • Lee, Ho-Min;Choi, Tae-Ho;Kim, Jung-Hyun;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.373-383
    • /
    • 2020
  • The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.

Experimental Study on GFRP Reinforcing Bars with Hollow Section (중공형 GFRP 보강근의 인장성능 실험연구)

  • You, Young-Jun;Park, Ki-Tae;Seo, Dong-Woo;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Fiber-reinforced polymer (FRP) has been generally accepted by civil engineers as an alternative for steel reinforcing bars (rebar) due to its advantageous specific tensile strength and non-corrosiveness. Even though some glass fiber reinforced polymer (GFRP) rebars are available on a market, GFRP is still somewhat uncompetitive over steel rebar due to their high cost and relatively low elastic modulus, and brittle failure characteristic. If the price of component materials of GFRP rebar is not reduced, it would be another solution to increase the performance of each material to the highest degree. The tensile strength generally decreases with increasing diameter of FRP rebar. One of the reasons is that only fibers except for fibers in center resist the external force due to the lack of force transfer and the deformation of only outer fibers by gripping system. Eliminating fibers in the center, which do not play an aimed role fully, are helpful to reduce the price and finally FRP rebar would be optimized over the price. In this study, the effect of the hollow section in a cross-section of a GFRP rebar was investigated. A GFRP rebar with 19 mm diameter was selected and an analysis was performed for the tensile test results. Parameter was the ratio of hollow section over solid cross-section. Four kinds of hollow sections were planned. A total of 27 specimens, six specimens for each hollow section and three specimens with a solid cross-section were manufactured and tested. The change by the ratio of hollow section over solid cross-section was analyzed and an optimized cross-section design was proposed.

Formulation of Alternative Non-Aqueous Cleaning Agents to Chlorofluorocarbon Compounds for Cleaning Flux, Solder and Grease (Flux, Solder 및 Grease 세정용 CFC 대체 비수계 세정제 배합 연구)

  • Jung, Young Woo;Lee, Ho Yeoul;Lee, Myoung Jin;Song, Ah Ram;Bae, Jae Heum
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.250-258
    • /
    • 2006
  • CFC compounds such as CFC-113 and 1,1,1-TCE, etc. have been used in various industries due to their excellent chemical stability, thermodynamic characteristics, non-inflammability and anti-corrosiveness. However, in oder to protect the earth environment, "the Montreal Protocol on substances that deplete the ozone layer" was adopted in 1989 for prevention of production and utilization of these CFC compounds and alternative cleaning agent have been required in the industry. The objective of this study is to develop non-aqueous cleaning agents that do not require major change of cleaning system, have excellent cleaning efficiency, are favorable to the environment, are harmless to the human body, and are not generated corrosive materials. In this work, non-aqueous cleaning agents have been formulated with glycol ether series and paraffinic hydrocarbon series with siloxane, and their physical properties and cleaning efficiencies were analyzed and compared with those of regulated materials. As a result of physical properties measurement of the formulated cleaning agents, it is expected that they may have good penetration ability into contaminated materials due to their properties with low density and low surface tension. Measurement of flash point and vapor pressure of the cleaning agents will be helpful for evaluation of their safety and working environment. The experimental results of cleaning flux, solder and grease by the formulated cleaning agents show that their cleaning abilities of soils were good and that there were no residues on the substance after cleaning. Therefore, alternative cleaning agents which have equivalent cleaning ability to regulating materials, good penetration ability and low hazard to human body, have been developed in this work.

  • PDF

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Upgrading of Quercus mongollica bio-oil by esterification (에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선)

  • Chea, Kwang-Seok;Lee, Hyung-Won;Jeong, Han-Seob;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • Fast pyrolysis bio-oil has unfavorable properties that restrict its use in many applications. Among the main issues are high acidity, instability, and water and oxygen content, which give rise to corrosiveness, polymerization during storage, and a low heating value. Esterification and azeotropic water removal can improve all of these properties. A 500 g of Quercus mongollica which grounded 0.8~1.4 mm was processed into bio-oil via fast pyrolysis for 2 seconds at $550^{\circ}C$. The esterification consists of treating pyrolysis oil with a high boiling alcohol like n-butanol at $70^{\circ}C$ under reduced pressure (100 hPa). All products are analyzed for water mass fraction, viscosity, higher heating value, pH, FT-IR and GC/MS. The water mass fraction can be reduced by 91.4 % (from 31.5 % to below 2.7 %), the viscosity by 65.8 % (from 36.5 to 12.5 cP) and the higher heating value can be increased by 96.8 % (from 3,918 to 7,712 kcal/kg), the pH by 1.3 (from 2.7 to 4.0). FT-IR and GC/MS analysis indicated that labile acids, aldehydes, ketones and lower alcohols were transformed to stable target products. Using this approach, the water content of the pyrolysis oil is reduced significantly. These improvements should allow the utilization of upgraded pyrolysis liquids in standard boilers and as fuel in CHP (Combined heat and power) plants.

Acidification of Pig Slurry with Sugar for Reducing Methane Emission during Storage (메탄 배출 저감을 위한 설탕을 이용한 돈 슬러리의 산성화)

  • Im, Seongwon;Oh, Sae-Eun;Hong, Do-giy;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.81-89
    • /
    • 2019
  • The major problem encountered during the storage of pig slurry (PS) is the release of huge amounts of greenhouse gases (GHGs), which are dominated by methane ($CH_4$). To reduce this, concentrated sulfuric acid has been used as an additive to control the pH of pig slurry to 5.0-6.0. However, other low-risk substitutes have been developed due to some limitations to its use, such as corrosiveness, and hazards to animal and human health. In this study, sugar addition was proposed as an eco-friendly approach for limiting $CH_4$ emission from PS during storage. The pH of PS has been reduced from $7.1{\pm}0.1$ (control) to $5.8{\pm}0.1$, $4.6{\pm}0.1$, $4.4{\pm}0.1$, $4.1{\pm}0.1$, and $4.0{\pm}0.1$, by the addition of 10, 20, 30, 40, and 50 g sugar/L, respectively. Lactate, acetate, and propionate were detected as the dominant organic acids and at sugar concentration above 20 g/L, lactate concentration represented 42-72% (COD basis) of total organic acids. For 40 d of storage, $20.6{\pm}2.3kg\;CO_2\;eq./ton\;PS$ was emitted in the control. Such emission, however, was found to be reduced to $8.7{\pm}0.4$ and $0.4{\pm}0.1kg\;CO_2\;eq./ton\;PS$ at 10 and 20 g/L, respectively. Small amount of $CH_4$ from PS at 10 g/L was emitted until 30 d of storage, while for rest of storage period, it has increased to $8.7{\pm}0.4kg\;CO_2\;eq./ton\;PS$ ( 40% of the control) when methanogens have recovered by increasing pH to 7.0. By the end of storage, VS and COD removal in the control reached 24% and 27%, while their ranges reached 15-4% and 12-17% in the sugar added experiments, respectively. It was found that more than 90% of COD removal was done by aerobic biological process.

Analysis of Ventilation Characteristics in Ship Fuel-Preparation Rooms During Ammonia Leakage (암모니아 누출 시 선박 연료 준비실의 환기 특성 분석)

  • Jin-Woo Bae;Bo Rim Ryu;Kweon-Ha Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.5
    • /
    • pp.490-498
    • /
    • 2024
  • Ammonia is an eco-friendly marine fuel that does not emit carbon dioxide and is a primary contributor to global warming. Despite its benefits, ammonia poses significant risks owing to its toxicity, explosiveness, and corrosiveness, thus necessitating robust safety measures to manage its potential leaks on ships. This study investigates the characteristics of ammonia leaks and ventilation dynamics in a ship fuel-preparation room, with emphasis on the ef ect of varying the positions of air supply and exhaust outlets. The leakage rate is set at 0.1 kg/s, with a ventilation rate of 30 ACH (air changes per hour). The scenario with air supply at Aft - Top - Stbd and exhaust at Fwd - Top - Stbd (Case 1) results in the highest average ammonia concentration after 100 s. Conversely, the scenario with air supply at Aft - Bottom - Stbd and exhaust at Fwd - Bottom - Port (Case 14) results in the lowest concentration. After 50 s, Case 1 indicate ammonia concentrations exceeding 1500 ppm toward Aft, whereas Case 14 indicate a consistent stagnation zone along the Fwd wall. The distribution of ammonia concentration and velocity varies by height owing to the positioning of the air supply and exhaust outlets as well as the equipment configuration, thus resulting in higher concentrations in areas with slower airflow. When a small amount of ammonia leaked at 0.1 kg/s for 10 s, explosive gas formed near the leak point at a height of approximately 1 m, thus indicating an extremely low risk of explosion from slight ammonia leaks. This study confirms that the optimal combination of air supply and exhaust-duct positions can effectively control ammonia concentration. This finding is expected to contribute to the establishment of design standards and ensure safety when using ammonia as marine fuel.