• Title/Summary/Keyword: Corrosive water quality

Search Result 26, Processing Time 0.021 seconds

The Monitoring of Corrosive Water Quality in Water Distribution System by Corrosion Characteristics of Raw and Tap water (원·정수의 부식특성에 따른 상수관망에서의 부식성 수질 모니터링)

  • Bae, Seog-Moon;Kim, Do-Hwan;Son, Hee-Jong;Choi, Dong-Hoon;Kim, Ik-Sung;Kim, Kyung-A
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2015
  • The tap water is generally known to be corrosive in the pH range at 6.5 ~ 7.5. And the degree of corrosion varies depending on the types of raw water such as river surface water or lake water of the dam. Although several corrosion index represents the corrosivity of tap water, the typical corrosion indexes such as Langelier saturation index (LI) and calcium carbonate precipitation potential (CCPP) were calculated to monitoring the corrosive water quality about raw and tap water in water distribution system. To control the corrosive water quality, the correlation between corrosion index and water quality factors were examined. In this study, corrosion index (LI, CCPP) and the pH was found to be most highly correlated.

Water Quality Monitoring for Corrosion Control in Waterworks System (상수도관망 시스템의 부식제어를 위한 수질모니터링)

  • Lee, Hyun-Dong;Kwak, Phill-Jae;Lee, Ji-Eun;Kim, Yeong-Kwan;Han, Myung-Ho;Park, Young-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2009
  • In existing systems, the best method inhibiting corrosion control in water distribution systems is to reduce water corrosiveness. Water corrosion can be decreased by controlling water quality through simple water treatment in treatment plants. On this research, we study the characteristics of tab water qualities in domestic areas, assessment of corrosive water quality and the method of water quality monitoring. This review presents the method of water quality monitoring which is the most applicable. Monitoring for corrosion control in waterworks system is the most proper method; It can prevent serious accidents economically and reduce civil appeals. Surely we should assess corrosive water quality in tab water, and introduce water treatment methods to control corrosive water quality before monitoring for corrosion. According to a lot of researches, it has been proved that simple water treatments can reduce the pipe corrosion. In this review we should indicate that we do not control of the corrosive water quality due to domestic conditions, we should monitor the water quality basically. Therefore, we recognize how the existing water quality can cause problems on pipeline corrosion, how to deal with it. Then it will be possible to apply water quality monitoring for corrosion control in water distribution system. Monitoring for corrosion control can be expressed by LI index, it is already known in literatures. This review presents more simple method than existing methods than existing ones we expect to apply these methods to SCADA in the future.

The Regulations and Guidelines for Management of Corrosive Water and Pipe Corrosion in Drinking Water Distribution System in North America (상수원 관망 부식 제어를 위한 부식성 수질 관리: 북미지역 관리 사례 및 국외 현황)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok;Loretta, Y. Li
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.359-369
    • /
    • 2017
  • Water distribution systems supply drinking water to consumers' taps. Internal corrosion of metallic pipe used in drinking water distribution systems has reduced water quality and led to increased levels of toxic heavy metals such as lead, copper and nickel. These problems have been experienced to varying degrees by water utilities in many countries. North America has successfully managed and controlled pipe corrosion and corrosive water in water distribution system based on various policies, regulations and rules. Practical and engineering guidelines for evaluation of pipe corrosion and determination of treatment options are also provided to assist drinking water supplies. In addition, the corrosion mechanism in water distribution systems, such as the complex effects of physical and chemical parameters on the corrosion pipes has been improved to accurately predict corrosion rates of metallic pipes in actual water distribution systems. This paper reviews various regulations, policy statement, and treatment produces on controlling corrosion in drinking water distribution systems in US and Canada and then offers suggestion for management of corrosive water and pipe corrosion in drinking water distribution system in Korea.

The Effects of pH and Alkalinity Adjustment on Internal Corrosion Control and Water Quality in Drinking Water Pipelines (정수의 pH 및 알칼리도 동시 조절이 상수도관의 내부부식 제어 및 수질에 미치는 영향)

  • Lee, Hyun-Dong;Jung, Hae-Ryong;Kwak, Phill-Jae;Chung, Won-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.661-669
    • /
    • 2000
  • This research was carried out to evaluate effect of metallic release and change of water corrosive indices by the pH and alkalinity adjustment using the SDLS (Simulated Distribution Loop System) which consist of six types of pipe loop with DCIP, PVC, PE, STS304, CP, GSP, respectively, and its effects on water quality changes which were microbes quality(SPC), residual chlorine. THMs and other parameters. And it was to propose optimal criteria of water quality control for the field application. According to the results, water control system by pH and alkalinity adjustment showed the changing of corrosive water and reducing of metallic release rate and it was not affects of THMs formation, microbes regrowth and variation of other parameters. Water quality stability and corrosion control were due to calcium carbonate precipitation film formation of pipe inner by water quality control. Therefore, corrosive water control system by pH and alkalinity adjustment can be attributed to effective water quality management in water distribution system according to water quality stability of pH and TIC(Total Inorganic Carbonate concentration) that affect the precipitation and dissolution of solids.

  • PDF

Introduction of Corrosion Index System for Stability of Drinking Water Quality (음용수질의 안정성을 위한 부식지수제도의 도입)

  • Kim, Yeong-Kwan;Kim, Jin-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.707-717
    • /
    • 2011
  • Replacement of old water distribution pipes for protecting water quality induced by pipe corrosion requires enormous budget. Even after the replacement, however, corrosion can occur again at any times and, therefore, inhibitive measure of the corrosion will be not only economical but needed to diminish the consumers' distrust on tap water quality. In 2008, National Environmental Research Institute did a survey on 8 major drinking water source and proposed to establish the Langelier Saturation Index(LI) as a corrosion index in Drinking Water Quality Criteria. Among the water industries of Korea, K-Water is the only one that set up the level of pH over 7.0 and LI above -1.5 on yearly average basis. However, no systematic regulation including LI to inhibit the corrosive tendency has been established yet. In this paper, LI values out of 31 drinking water treatment plants were analyzed and two-stage control of LI value as a measure of corrosive tendency of water is proposed. Primarily, water treatment facilities may operate the system at a target LI value below -1.5. Following the investigation on the effect caused by adjusting the LI value on water quality and corrosiveness, it will be desirable to improve LI value below -1.0 in the long run. In addition to the LI, supplemental use of Larson's modified ratio (LMR) which incorporates hydraulic detention time will be necessary. Several methods to prove the inhibitive effect of improving the LI value on water quality have been also suggested.

Evaluation of Calcium Carbonate Saturation Indices in Water (상수 원수 수질의 탄산칼슘 포화지수 평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.130-135
    • /
    • 2007
  • In order to examine the corrosiveness of tap water, we studied methods calculating various indices including calcium carbonate saturation indices, using RTW model and LPLWIN model. Indices such as LI, RI and AI could be computed using the RTW model, whereas the LPLWIN model could find indices as LI, LR and CCPP. With water quality data obtained from tap water of Han River and Nak-Dong River watersheds, based on the indices found from the models, the water quality of the Nak-Dong River is better than that of Han River in the point of resisting corrosiveness. Further, the water quality of winter is highly corrosive than that of summer, as long as the temperature rises up, the corrosiveness is reduced.

  • PDF

Approaches to Internal Corrosion Control Technologies by Controlling Water Quality in Water Treatment Systems (수질제어를 통한 관 내부 부식방지 기술의 정수처리공정 적용방안)

  • Seo, Dae-Keun;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.509-518
    • /
    • 2006
  • Although final water of domestic water treatment plants almost contains highly corrosive characteristics, the countermeasures for eliminating internal corrosion of pipeline system have not been conducted yet by controlling water quality in plants. The technologies of internal corrosion control are to control water quality parameters(pH, Alkalinity, and Calcium Hardness etc.) and to use corrosion inhibitor. Under the conditions of domestic water treatment, first of all, the technologies of adjusting water quality parameters has to be considered. Otherwise, The technology of using corrosion inhibitor is favorably thought to be applied with the technology of adjusting water quality parameters in accordance with the result of availability for water treatment process. Since the technology of adjusting water quality parameter influences on other water treatment processes, the guideline of water quality management to be apt for water quality characteristic is required to be estabilished. While the selection of proper chemicals and technologies is dependent upon the raw water characteristics and water treatment process, typically, the technology of $Ca(OH)_2$ & $CO_2$ additions is considered more effective than other technologies in order to adjust pH and Alkalinity, increase $Ca^{2+}$ and form $CaCO_3$ film

Evaluation of Corrosion Index by Water Quality Parameters in Korea (국내 수질에 적합한 부식성지수 선정 연구)

  • Ahn, Kyunghee;Yu, Soonju;Park, Sujeong;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.615-623
    • /
    • 2012
  • In this study, we evaluate the corrosion indexes (CI) such as Langelier Index (LI), Larson ratio (LR), Ryznar saturation index (RSI), Aggressiveness index (AI) of water quality for raw water, treated water and water in distribution reservoir at major eight drinking water treatment plants (DWTPs) in Korea. By analyzing secondary contamination of tap water, the variation of secondary contaminants was investigated with regard to pipe materials, aging and corrosion index (CI). In addition, we suggested an appropriate CI applicable water quality and the management plan for CI monitoriing. All CI showed corrosive water quality, and they did not change significantly in the distribution network. However, Copper (Cu), iron (Fe) and zinc (Zn) concentrations as secondary contaminants increased through the distribution network. Among CI, LI was most sensitive to changes in raw water quality and drinking water treatment. Also, it has high correlations with other indexes such as RSI, AI. Therefore, LI is considered as an appropriate CI to the domestic water quality. Based on these result, we propose LI as a drinking water quality standard to control the pipe corrosion from DWTPs.

Effect of corrosive water quality control and corrosion index monitoring in pilot scale pipeline simulator (파일럿 규모 모의관로에서 부식성 수질제어 효과와 부식지수 모니터링)

  • Kim, Do-Hwan;Kim, Yung-Jin;Son, Hee-Jong;Ryou, Dong-Choon;Ahn, Jun-Young;Kim, Cheolyong;Hwang, In-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.183-192
    • /
    • 2018
  • Applicability of corrosion inhibitor was evaluated using pilot scale water distribution pipe simulator. Calcium hydroxide was used as corrosion inhibitor and the corrosion indices of the water were investigated. Corrosion indices, Langelier saturation index (LI) increased by 0.8 and calcium carbonate precipitation potential (CCPP) increased by 9.8 mg/L. This indicated that corrosivity of water decreased by corrosion inhibitor and the effects lasted for 18 days. Optimum calcium hydroxide dose was found to be 3~5 mg/L for corrosion inhibition. We suggest that monitoring of CCPP as well as LI need to be conducted to control corrosivity of water.

Characteristics and Improvement of Tap Water Corrosivity in Korea (국내 수돗물의 부식성 특성 및 개선방안)

  • Kim, Jin-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.731-739
    • /
    • 2011
  • To investigate corrosivity characteristics of tap water in Korea, Langelier index (LI) of 30 multi-regional water treatment plants (WTPs) were evaluated. Weekly LI values of 30 WTPs were all negative, which means tap water in Korea might be very corrosive. Maximum LI decrease through water treatment processes was 0.95 under no additional corrosion control process. Based on the correlation results between LI and tap water qualities, pH and calcium concentration were confirmed as major parameters for LI control. Addition of calcium hydroxide with $CO_{2}$ or calcium hydroxide or sodium hydroxide can be chosen based on water quality. Continuous monitoring of LI and related parameters is recommended in water distribution system.