• Title/Summary/Keyword: Corrosive Materials

Search Result 225, Processing Time 0.027 seconds

Evaluation of Scc Susceptibility of Welded HAZ in Structual Steel(II) -Frcature Behavior in Cathodic Protection- (강 용접부의 응력부식크랙 감수성 평가에 관한 연구 II -음극방식에서의 파괴거동-)

  • 임재규;조정운;나의균
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.61-74
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environment has been attributed to stress corrosion cracking(SCC) which is resulting from the combined effects of corrosive environments and static tensile stress. Cathodic protection is an electrochemical method of corrosion control that is widely used in marine environment and primarily on carbon steel. A number of criteria are used to determine whether or not a structure is cathodically protected. In practice, -0.8V versus Ag/AgCl is the most commonly used for marine structures. This paper showed the combined effects of cathodic potential and slow, monotonic straining on the tensile ductility and fracture morphology of parents and friction welded joints for SM45C, SCM440 and SM20C steels in syntheic sea water(S.S.W.,pH:8.2). For the parent materials in cathodic potentials, the higher tensile strength is, the more susceptible SCC is. And the welded HAZ is more susceptible than the parent materials.

  • PDF

Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion (흡수에 따른 탄소섬유 강화수지의 파괴거동)

  • Kim, O. G.;Nam, K. W.;Ahn, B. H.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF

An Eight-directional Airborne Chloride Collection Method for the Application of an Appropriate Anti-corrosive Material for Each Side of a Building

  • Cho, Gyuhwan;Yeo, Inhwan;Park, Dongcheon
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 2016
  • To secure the anticorrosive performance of structures in the oceanic environment it is necessary to select appropriate finishing materials and thickness of cover. However, airborne chloride deposition varies depending on the collector used, and it is difficult to select appropriate finishing materials. For this reason, an eight-directional collector is proposed in this study through reviewing the differences between existing airborne chloride collectors and the new one. To analyze airborne chloride deposition according to the direction from which it flows and verify the performance of the collector proposed in this study, airborne chlorides were deposited on the collector for one year at five different locations in an oceanic environment. From the experiment, it was verified that in terms of direction, there were differences in airborne chloride deposition of up to more than 1.5 times. Based on these research findings, the anti-corrosive method applied can be different for each side of a building's structure, and this is believed to serve as an effective and systemic chloride resistance design.

An Evaluation on Corrosion Fatigue life of Spring Steel by Compressive Residual Stress (압축잔류응력을 부여한 스프링강의 부식피로 수명평가)

  • Park, Keyung-Dong;Ki, Woo-Tae;Sin, Yeong-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the influence of compressive residual stress and corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3+3%HF,\;6%FeCl_3$. The immersion period was performed for 90days. The fatigue characterization of a spring steel with processed shot peening were performed by considering the several corrosion environments in the range of stress ratio of 0.05 by means of opening mode displacement. By using the methods mentioned above, the following conclusions have been drawn: The fatigue life shows more improvement in the shot peened material than that in the un peened material. And the fatigue life shows improvement in ambient than in corrosion conditions. Threshold stress intensity factor range of the shot peened materials has higher than of the un peened materials. And the threshold stress intensity factor range was decreased in corrosion environments over ambient.

Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate (CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교)

  • Paik, Jung-Ho;Han, Won-Kyu;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.187-193
    • /
    • 2010
  • Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

Anode Fabrication and Characterization of MCFC (MCFC의 Anode 제작과 특성)

  • Kim, G.Y.;Eom, S.W.;Kim, I.S.;Yun, M.S.;Moon, K.H.;Youn, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.854-856
    • /
    • 1992
  • The molten carbonate fuel cell has conspicuous features and high potential in being used as an energy converter of various fuels to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650 [$^{\circ}C$] have many problems. This study has examined fabricating methods and specimen characteristics of porous anode electrode.

  • PDF

Corrosion Characteristics of Catenary Materials in Electric Railway System (전차선로 가선재료의 부식특성)

  • 김용기;윤상인;장세기;이재봉
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.535-542
    • /
    • 2000
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as Catenary Materials in Electric Railway System. Since these materials may have chance to be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important not only to investigate the corrosion characteristics but also to measure corrosion rates in various corrosive environments. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization. a.c impedance spectroscopy and galvanic corrosion tests were carried out in these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effect on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF

Freeze-Thaw Durability and Carbonation of Concrete Surface Protecting materials (콘크리트 표면보호재 종류에 따른 동결융해 및 중성화 내구특성)

  • Lee, Beung-Duk;Kim, Hyun-Joong;Kwon, Young-Rak;Kim, Sye-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.593-596
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of concrete structure in the highway. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. In this study, Use of deicing chemicals has been and will continue to be a major part of highway freeze-thaw durability and carbonation of concrete surface protecting materials

  • PDF

An Electrochemical Evaluation of the Corrosion Property on the Welded Zone of Sea Water Pipe by each Welding Materials (용접 재료 별 해수 배관 용접부위의 부식 특성에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Won, Chang-Uk;Moon, Kyung-Man
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.185-188
    • /
    • 2006
  • The sea water pipe of engine room in all kinds of ships is being surrounded with severe corrosive environment. Therefore it's leakage part due to corrosion is inevitably prevented by various welding method. In this case corrosion property of welded zone may be considerably different by each welding materials. In this study corrosion resistance of the welded zone of sea water pipe with some welding materials such as shielded metal arc welding materials, inert gas arc welding materials was investigated with electrochemical method.

  • PDF

Electrode Fabrication of Molten Carbonate Fuel Cell Anode (용융탄산염형 연료전지의 anode 전극 제작)

  • Kim, G.Y.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.255-258
    • /
    • 1991
  • MCFC are expected as an electric and thermal power source of the urban cogenerating system because MCFC have higher electric power efficiency and better thermal power quality. However, the MCFC which use strorgly corrosive molten Carbonate at $650^{\circ}C$ have many problems. Material issues with the molten carbonate fuel cell in clude anode creep, conthode dissolution and bipolar plate corrosion. The objectives of this study are to examied fabrication process and characteristics of anode electrode.

  • PDF