• Title/Summary/Keyword: Corrosion-damage

Search Result 627, Processing Time 0.023 seconds

A Study on Electromagnetic Properties in OPC Mortar with Different Chloride Content (염화물을 혼입한 OPC 모르타르의 전자기 특성에 대한 연구)

  • Kwon, Seung-Jun;Na, Ung-Jin;Feng, M.Q.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.565-571
    • /
    • 2008
  • Recently, the evaluation technique using NDT (Nondestructive Technique : NDT) is widely utilized because it makes little damage on RC (Reinforced Concrete : RC) structures. The techniques using electromagnetic properties (EM properties) are also attempted for the evaluation of the performance of concrete which is nonmetallic. For the economic manufacturing of concrete material, sea-sand is often used as aggregate, however, chloride ion in concrete has direct effects on steel corrosion and EM properties. In this study, OPC mortar specimens with 5 different chloride amount (0.0, 0.6, 1.2, 2.4, and $3.6kg/m^3$) and 3 different water-cement ratios (45%, 55%, and 65%) are prepared in order to investigate the EM properties corresponding to concrete properties. The EM properties of conductivity and dielectric constant are measured in the frequency range over 0.2~20 GHz. To facilitate the comparison of EM properties with chloride content, average values are taken respectively for the conductivity and dielectric constant measured over the 5~20 GHz frequency range. According to the results of this experiment, dielectric constant and conductivity are increased with lower W/C ratio and larger amount of chloride content.

Gas Injection Experiment to Investigate Gas Migration in Saturated Compacted Bentonite (포화 압축 벤토나이트 내 기체 이동 현상 관측을 위한 기체 주입 시험)

  • Jung-Tae Kim;Changsoo Lee;Minhyeong Lee;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.89-103
    • /
    • 2024
  • In the disposal environment, gases can be generated at the interface between canister and buffer due to various factors such as anaerobic corrosion, radiolysis, and microbial degradation. If the gas generation rate exceeds the diffusion rate, the gas within the buffer may compress, resulting in physical damage to the buffer due to the increased pore pressure. In particular, the rapid movement of gases, known as gas breakthroughs, through the dilatancy pathway formed during this process may lead to releasing radionuclide. Therefore, understanding these gas generation and movement mechanism is essential for the safety assessment of the disposal systems. In this study, an experimental apparatus for investigating gas migration within buffer was constructed based on a literature review. Subsequently, a gas injection experiment was conducted on a compacted bentonite block made of Bentonile WRK (Clariant Ltd.) powder. The results clearly demonstrated a sharp increase in stress and pressure typically observed at the onset of gas breakthrough within the buffer. Additionally, the range of stresses induced by the swelling phenomenon of the buffer, was 4.7 to 9.1 MPa. The apparent gas entry pressure was determined to be approximately 7.8 MPa. The equipment established in this study is expected to be utilized for various experiments aimed at building a database on the initial properties of buffer and the conditions during gas injection, contributing to understanding the gas migration phenomena.

Application of Laboratory Furniture Drawer Material Development Process Using TRIZ and ARIZ-85C (TRIZ와 ARIZ-85C를 활용한 실험실 가구 서랍 재질 개발 프로세스 적용 사례)

  • Youngjin SON;Sungmin BAE
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.3
    • /
    • pp.575-591
    • /
    • 2024
  • Purpose: Storage furniture in a laboratory where chemical experiments are conducted should satisfy both the chemical reactivity and stability required in the experimental environment, commonality with general households, and economic feasibility for the mass production system. Therefore, the development of storage furniture used in the laboratory should be done quickly through a process verified by utilizing various ideas and using a method suitable for the special environment called the laboratory. This study deals with the process of developing materials for inner drawers of laboratory furniture that meet these requirements. Methods: TRIZ methodology and ARIZ-85C process were applied to satisfy the requirements arising from the product development process, ARIZ process was applied step by step to resolve the contradictions that occurred during the development process, and 40 invention principles and ideal solutions (Ideal Final Results: IFR) were derived through clear analysis of the problem to select materials suitable for the special environment of the laboratory. Results: This study focused on the selection of materials that meet the durability and chemical stability required in the special environment of laboratory furniture. Through this, various solutions were sought with the aim of reducing cost and increasing productivity, and the process of maximizing useful functions and minimizing irrational parts in use was focused on TRIZ's contradiction resolution method. As a result, we found a way to improve the performance and efficiency of laboratory furniture through the selection of optimized furniture materials and problem solving methods. Conclusion: In this study, a methodology for the development of efficient and safe laboratory furniture materials was found and verified. In the use of furniture products in a laboratory, corrosion or damage caused by chemical generators may occur, making it difficult to use as a product. As a result, a method to reduce cost and increase productivity while maintaining the durability and chemical stability of laboratory furniture was found, and by finding a solution to the two relationships between chemical safety and production efficiency in the process of selecting materials for optimized furniture materials, and applying the ARIZ development process, the effectiveness of the product development process in a special environment could be verified.

Evaluation of Physical Properties and Material Characterization for Structural Frame at the Stained Glass Windows to Gongju Jeil Church of the Registered Cultural Heritage in Korea (국가등록문화재 공주제일교회 스테인드글라스 구조재의 재질특성과 물성 평가)

  • Bo Young Park;Hye Ri Yang;Chan Hee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.103-114
    • /
    • 2023
  • The Christian Museum of Gongju Jeil Church was first built in 1931 and was largely damaged during the Korean War, but the walls and chimneys have been preserved. This building has a high architectural values in that the chapel was reconstructed in 1956, and maintains its original form through repair of damaged parts rather than new construction. The stained glass windows were as installed in 1979 and has a great significance in the Dalle de Verre method using lump glass. However, some of the stained glass damaged partially, such as various cracks and splits, and vertical and horizontal cracks in the joint fillers of supporting the colored glass. As the structural materials of the stained glass window, an iron frame and cement mortar filled with it were used, and corrosion of iron, cracking of mortar and granular decomposition appear partially due to weathering. In the joint fillers, the content of Ca and S is very high, indicating that gypsum were used as admixtures, and the gypsums grow in a rhombohedral and forms a bundle, which is investigated to have undergone recrystallization. As a result of modeling the ultrasonic velocity at the joint fillers, the left and right windows at the entrance show relatively weak in the range of 800 to 1,600m/s, and the lower right corner of the altar window and the upper left corner of the center window were also 1,000 to 1,800m/s, showing relatively low physical properties. And gypsums produced during the neutralization of lime mortar were detected in the joint fillers and contaminants on the surface. Such salts may cause damage to the joint material due to freezing and thawing, so appropriate preventive conservation is required. Also, since various damage types are complexly appearing in stained glass window and joint filler, customized conservation treatment should be reviewed through clinical tests.

Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction (소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구)

  • Park, Sun Hee;Min, Jae Hong;Lee, Tae-Ho;Wi, Myung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.863-870
    • /
    • 2016
  • We investigated the physical/chemical phenomena that a slow loss of $CO_2$ inventory into sodium after the sodium-$CO_2$ boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical $CO_2$ Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as $CO_2$ was injected through the nozzle at $300{\sim}400^{\circ}C$ in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after $CO_2$ injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-$CO_2$ fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of $CO_2$ (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature ($400{\sim}500^{\circ}C$), or the diameter of the $CO_2$ nozzle (0.2~0.8 mm). Velocities at the $CO_2$ nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.