• Title/Summary/Keyword: Corrosion-damage

Search Result 627, Processing Time 0.032 seconds

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding (핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구)

  • Park, Soon Sub;Ko, Myeong Jin;Kim, Geon Hee;Won, Jong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

The Study on Salt Injury and Carbonation of Reinforced-Concrete (철근콘크리트의 염해와 중성화 피해 사례 연구)

  • Kim, Dong-Hun;Lim, Nam-Gi;Lee, Sang-Beam
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 2002
  • A reinforced concrete building neighboring in Pusan or Ulsan where is directly exposed to salt water contrasting with other in land areas contains much salt content percolated from the outside that the high salt content percolates and diffuses through the inside of reinforced concrete; therefore, an immovable tunic surrounding it begins to be destroyed and eroded with high speed. At the time, the cross-sectional area and volume expansion of re-bar reinforcing result in being cracks make a rapid progress gradually until they appear in the surface of the one, the phenomenon such as being a thin layer or falling off the part of it causes a lowering of its durability and might collapse the concrete construction. So far, we've investigated into salt content of reinforced concrete constructions neighboring in a seaside district and damage by carbonation, and we came to a conclusion as follows: $\circled1$ Under the oceanic circumstance a concrete construction is influenced by sea water directly that contains much amount of salt content contrasting with other constructions on inland areas. $\circled2$ Because of chloride penetration the carbonation of reinforced concrete made a rapid progress until more than the covering thickness of re-bar. $\circled3$ An old reinforced concrete building which has been piled up salt injury and proceeding the carbonation of its cross-sectional area. $\circled4$ According to rapidly cracking from the inside to surface of reiforced concrete, the phenomenon of being a thin layer or falling off the part of reinforced concrete results in a lowering of durability and shortening the life-time of concrete construction itself.

Performance Evaluation of Sintered Metal Filter in LILW Vitrification Facility (중.저준위 방사성폐기물 유리화설비에서 금속필터 적용성평가)

  • Park, Seung-Chul;Kim, Byong-Ryol;Hwang, Tae-Won
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.146-153
    • /
    • 2006
  • A performance test of the stainless steel based sintered metal filter was conducted on the low and intermediate level radioactive waste (LILW) vitrification process. The applicability of the metal filter was based on the test results as well. The baseline pressure drop of the metal filter was evaluated similar to the ceramic filter. During the test, when the flow rate of off-gas was $110Nm^{3}/h$, the total baseline pressure drop was shown as $92mmH_{2}O$. The total pressure drop was attributed to the filter media and the residual dust layer and the value of each was $25mmH_{2}O\;and\;67mmH_{2}O$ respectively. The SEM-EDS spectrum and micrograph of the metal filter specimen showed, no corrosion and no physical damage both at the skin membrane and at the support layer. And most of the baseline pressure drop was caused by the deposition of dust on the surface of the membrane. In conclusion, even though the filter exposure time was short at the test, the performance of the stainless steel based metal filter was acceptable for the treatment of LILW vitrification process.

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.

Evaluation of Chloride Ion Penetration Characteristics for Concrete Structures at Coastal Area (해안지역 콘크리트 구조물의 염소이온침투특성 평가)

  • Han, Sang-Hun;Yi, Jin-Hak;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • A major source of durability problems in concrete structures is the corrosion of steel by the damage of passivity layer around steel bars. As chloride ion penetration is major cause of the destruction of passivity layer, evaluation of depth and concentration profile of chloride ion is the essential factor for the service-life estimation of concrete structure. To estimate chloride ion penetration characteristics, this paper on the basis of in-situ experimental data investigated the depth and concentration profile of chloride ion penetration. The core specimens are obtained at air-zone, splash zone, and tidal zone in Wando, Masan, Incheon, Gwangyang, and donghae harbors. Colorimentric method measured the chloride ion penetration depth and ASTM C 114 evaluated the concentration profile of chloride ion. Based on experimental data, the influence of harbor location and exposure condition on chloride ion penetration is evaluated.