• 제목/요약/키워드: Corrosion products activity

검색결과 14건 처리시간 0.028초

부식철편에 있어서 철환원능력을 갖춘 세균의 활동에 의한 부식생성물의 변화 (A Study on the Change of the Corrosion Products by the Activity of Iron Reducing Bacteria for Corrosion Carbon Steel)

  • 이소연;마츠이 토시야;요시카와 히데키
    • 보존과학회지
    • /
    • 제26권4호
    • /
    • pp.407-416
    • /
    • 2010
  • 토양 중에 존재하는 철환원능력을 갖춘 세균은 철제유물의 부식생성물을 에너지원으로 이용할 수 있다. 이러한 세균의 활동은 부식생성물의 변화를 초래하여 유물의 부식을 촉진시키는 부식생성물의 판단을 어렵게 할 수 있다. 본 연구의 목적은 철환원세균이 부식생성물에 일으키는 변화를 조사하여, 철제유물의 부식에 관한 이해를 높이고자 한다. 실험은 출토철제유물을 재현하기 위해서 부식촉진인자 중에서 가용성염류(염화물이온, 황산이온)를 이용하여 부식시킨 철편을 준비하였다. 이 부식철편을 세균이 존재하는 배지에서 42일간 배양하였다. 실험 후, 부식철편의 부식생성물은 SEM, EDS, XRD를 이용하여 관찰, 분석을 실시하였다. 관찰결과, 부식철편이 세균의 활동으로 인해 녹색으로 변화하였으며 부식철편에 판상 결정과 마름모꼴 결정이 새롭게 생성된 사실을 알게 되었다.

Effects of superimposed cyclic operation on corrosion products activity in reactor cooling system of AP-1000

  • Mahmood, Fiaz;Hu, Huasi;Lu, Guichi;Ni, Si;Yuan, Jiaqi
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1109-1116
    • /
    • 2019
  • It is essential to predict the radioactivity distribution around the reactor cooling system (RCS) during obligatory cyclic operation of AP-1000. A home-developed program CPA-AP1000 is upgraded to predict the response of activated corrosion products (ACPs) in the RCS. The program is written in MATLAB and it uses state of the art MCNP as a subroutine for flux calculations. A pair of cyclic power profiles were superimposed after initial full power operation. The effect of cyclic operation is noticed to be more prominent for in-core surfaces, followed by the primary coolant and out-of-core structures. The results have shown that specific activity trends of $^{56}Mn$ and $^{24}Na$ promptly follow the power variations, whereas, $^{59}Fe$, $^{58}Co$, $^{99}Mo$ and $^{60}Co$ exhibit a sluggish power-following response. The investigations pointed out that promptly power-following response of ACPs in the coolant is vital as an instant radioactivity source during leakage incidents. However, the ACPs with delayed power-following response in the out-of-core components are perceived to cause a long-term activity. The present results are found in good agreement with those for a reference PWR. The results are useful for source term monitoring and optimization of work procedures for an innovative reactor design.

혐기성 토양에 서식하는 황산염환원세균에 의한 가스배관의 미생물부식 (CORROSION OF STEEL GAS PIPELINE INDUCED BY SULFATE-REDUCING BACTERIA IN ANAEROBIC SOIL)

  • 이선엽;전경수;고영태;강탁
    • 한국가스학회:학술대회논문집
    • /
    • 한국가스학회 2001년도 추계학술발표회 논문집
    • /
    • pp.58-68
    • /
    • 2001
  • Microbiologically influenced corrosion (MIC) of carbon steel gas pipeline in soil environments was investigated at field and laboratory MIC is very severe corrosion and it is not easy to distinguish this corrosion from Inorganic corrosion because of its localized, pitting-type character Therefore, it is important to provide proper assessment techniques for the prediction, detection, monitoring and mitigation of MIC. It is possible to predict the MIC risk, i.e., the activity of sulfate-reducing bacteria (SRB) through the analysis of soil environments. Chemical, microbiological and surface analysis of corrosion products and metal attacked could reveal the possibility of the occurrence of MIC. Various electrochemical and surface analysis techniques could be used for the study of MIC. Among these techniques, thin-film electrical resistance (ER) type sensors are promising to obtain localized corrosion rate of MIC induced by SRB. It is also important to study the effect of cathodic protection (CP) on the MIC In case of coated pipeline, the relationship between coating disbondment and the activity of SRB beneath the disbanded coating is also important.

  • PDF

국내 PWR의 일차냉각재 pH 운전방법의 평가 (Evaluation of Primary Coolant pH Operation Methods for the Domestic PWRs)

  • Paek, Seung-Woo;Na, Jung-Won;Kim, Yong-Eak;Bae, Jae-Heum
    • Nuclear Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.52-62
    • /
    • 1992
  • 국내 원자력 발전소의 주요 기종인 가압 경수로에서는 일차 냉각계통을 통한 부식생성물 (CRUD)의 이동에 의해 노심에서 방사화된 후 노외표면에 침적된 방사성 핵종은 원전 종사자 방사선 피폭의 주원인이 된다. 따라서, 부식생성물에 의한 방사선 피폭을 감소시키기 위한 최적 화학운전 방안이 요망된다. 본 연구에서는 운전중인 국내 4개 발전소의 실제 수화학 운전 자료를 분석하였으며, 냉각재 화학운전 자료를 평가하기 위해 냉각재 수화학 조건에 따라 방사능 생성양을 계산할 수 있는 Computer 코드를 이용하였다. 실제 수화학 운전조건과 가정된 Elevated Li 운전조건에 따른 운전결과를 Computer 코드에 의해 예측하여 비교한 결과, Elevated Li 수화학 운전방법을 적용할 경우, 현재 적용되는 수화학 운전방법에 비하여 노심에서 부식생성물의 침적을 감소시킴으로써 노외 방사능 양을 상당히 감소시킬 수 있음을 알았다. 또한 계통 구성재 질과 핵연료봉의 건전성이 보장되는 한 냉각재 pH를 상승시키면 노외 방사능 생성감소에 유리함을 밝혔다.

  • PDF

36개월간 국내 옥외폭로시험에 따른 갈바륨 강판의 대기부식거동 및 표면외관 변화 (Atmospheric Corrosion and Surface Appearance of Galvalume Steel following Outdoor Exposure for 36 Months: A Korean Study)

  • 김기태;유영란;김영식
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.326-336
    • /
    • 2020
  • Galvalume steel (GL) is widely used in marine and industrial environments. It is characterized by better corrosion resistance than carbon steel. However, corrosion and economic losses may occur as the usage time is increased. Therefore, in this study, an outdoor exposure test of GL for 36 months was conducted across six regions of Korea. Parameters such as corrosion rate, chrominance (color, chroma, and brightness), glossiness, and surface appearance were analyzed. The results showed no significant change in appearance, and the initial corrosion rate was large, but a tendency to decrease with time was observed. Increased outdoor exposure time led to increase in the level of corrosion products. In the case of coastal areas where S, Cl, and other elements were detected, a relatively high decrease in Zn content was observed. Al forms a protective oxide film and exists in the coating layer, but Zn dissolves due to its chemical activity and low potential.

생체유사환경 하의 치과용 임플란트의 피로강도 평가 및 수명 향상법 (Fatigue Strength of Dental Implant in Simulated Body Environments and Suggestion for Enhancing Fatigue Life)

  • 김민건
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.259-267
    • /
    • 2014
  • 치과용 임플란트를 대상으로 하여 건전환경 및 생체 내의 인자들을 유사하게 반영한 생체유사환경 하에서 피로시험을 수행하였다. 생체유사환경으로는 링거액 환경과 인공타액환경을 각각 사용하였다. 우선 건전환경과 생체유사환경 하에서의 피로수명 및 피로한도를 평가하였다. 또한 피로수명을 향상시킬 수 있는 한 가지 방법을 제안하였다. 인공타액 하에서의 피로수명이 링거환경보다 대체적으로 감소하였다. 시편에 대한 부식작용은 인공타액이 링거액보다 훨씬 크다. 이러한 부식의 차이가 두 경우의 피로수명의 차이로 나타난 것으로 판단된다. 질화처리된 지대주 나사의 질화경화층을 제거하고, 질소확산층을 최표면으로 하는 지대주 나사를 사용한 임플란트의 피로수명은 텅스텐카바이드를 코딩한 기존 제품에 비해 최대 8배의 피로수명 향상효과가 확인되었다.

한울1호기 17주기 연료 크러드의 노내 체류시간 평가 (Evaluation of Core Residence Time of Fuel Cruds from Hanul Unit 1 Cycle 17)

  • 이두호
    • 방사성폐기물학회지
    • /
    • 제12권3호
    • /
    • pp.211-216
    • /
    • 2014
  • 발전소 구조재료의 일반부식에서 기인된 부식생성물은 연료 표면에 침적되어 방사화되고, 다시 노외로 방출되어 계통 선량율을 증가시킨다. 본 연구에서는 방사화된 크러드의 생성과정에 대한 이해를 높이고자 연료 크러드의 비방사능 값과 노내 체류시간을 계산하였다. 노내 체류시간 계산시 모핵종이 조사기간 동안 지속적으로 일정한 양만큼 침적되는 것으로 가정하였다. 본 연구에 활용된 연료 크러드 시료는 한울1호기 17차 O/H시 fuel scraping을 통해 채취되었으며, 본 연구를 위해 원소성분 분석과 핵종 분석이 수행되었다.

Development of PCM Color Coated Steel Sheets with Excellent Antiviral and Antimicrobial Properties

  • Du-Hwan Jo;Seongil Kim;Jinkyun Roh;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.139-144
    • /
    • 2024
  • Recently, due to the rapid spread and continuation of COVID-19, customer demand for health and hygiene has increased, requiring the development of new products that express antiviral and antibacterial properties. In particular, viruses are much smaller in size than bacteria and have a fast propagation speed, making it difficult to kill. POSCO has developed eco-friendly PCM color coated steel sheets with excellent antiviral properties by introducing inorganic composite materials to the color coating layer on the surface of Zn-Al-Mg alloy plated steels. The virus is not only destroyed by adsorption of metal ions released from the surface of the coating film, but is also further promoted by the generation of reactive oxygen species by the reaction of metal ions and moisture. As a result of evaluating the developed products under the International Standard Evaluation Act, the microbicidal activity was 99.9% for viruses, and 99.99% for bacteria and 0% fungi. In particular, excellent results were also shown in the durability evaluation for life cycle of the product. The developed product was applied as a wall of school classrooms and toilets and ducts for building air conditioning, resulting in excellent results. Developed products are being applied for construction and home appliances to practice POSCO's corporate citizenship.

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.

Utilization of EPRI ChemWorks tools for PWR shutdown chemistry evolution modeling

  • Jinsoo Choi;Cho-Rong Kim;Yong-Sang Cho;Hyuk-chul Kwon;Kyu-Min Song
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3543-3548
    • /
    • 2023
  • Shutdown chemistry evolution is performed in nuclear power plants at each refueling outage (RFO) to establish safe conditions to open system and minimize inventory of corrosion products in the reactor coolant system (RCS). After hydrogen peroxide is added to RCS during shutdown chemistry evolution, corrosion products are released and are removed by filters and ion exchange resins in the chemical volume control system (CVCS). Shutdown chemistry evolution including RCS clean-up time to remove released corrosion products impacts the critical path schedule during RFOs. The estimation of clean-up time prior to RFO can provide more reliable actions for RCS clean-up operations and transients to operators during shutdown chemistry. Electric Power Research Institute (EPRI) shutdown calculator (SDC) enables to provide clean-up time by Co-58 peak activity through operational data from nuclear power plants (NPPs). In this study, we have investigated the results of EPRI SDC by shutdown chemistry data of Co-58 activity using NPP data from previous cycles and modeled the estimated clean-up time by EPRI SDC using average Co-58 activity of the NPP. We selected two RFO data from the NPP to evaluate EPRI SDC results using the purification time to reach to 1.3 mCi/cc of Co-58 after hydrogen peroxide addition. Comparing two RFO data, the similar purification time between actual and computed data by EPRI SDC, 0.92 and 1.74 h respectively, was observed with the deviation of 3.7-7.2%. As the modeling the estimated clean-up time, we calculated average Co-58 peak concentration for normal cycles after cycle 10 and applied two-sigma (2σ, 95.4%) for predicted Co-58 peak concentration as upper and lower values compared to the average data. For the verification of modeling, shutdown chemistry data for RFO 17 was used. Predicted RCS clean-up time with lower and upper values was between 21.05 and 27.58 h, and clean-up time for RFO 17 was 24.75 h, within the predicted time band. Therefore, our calculated modeling band was validated. This approach can be identified that the advantage of the modeling for clean-up time with SDC is that the primary prediction of shutdown chemistry plans can be performed more reliably during shutdown chemistry. This research can contribute to improving the efficiency and safety of shutdown chemistry evolution in nuclear power plants.