• 제목/요약/키워드: Corrosion measurement

검색결과 432건 처리시간 0.027초

Characterization of Tribocorrosion Behaviour of CoCr Alloy by Electrochemical Techniques in Several Corrosive Media

  • Escudero, M.L.;Diaz, I.;Martinez Lerma, J.F.;Montoya, R.;Garcia-Alonso, M.C.
    • Corrosion Science and Technology
    • /
    • 제17권2호
    • /
    • pp.68-73
    • /
    • 2018
  • Substitution of hip and knee joints by CoCr alloys is in great demand due to their high wear resistance and good biocompatibility. Understanding of tribocorrosion in joint replacements requires study of variables such as coefficient of friction and the choice of a proper corrosive medium in wear-corrosion tests carried out in the lab. The objective of this study was to characterize tribocorrosion behaviour of CoCr alloy with low (LCCoCr) and high carbon (HCCoCr) contents in several corrosive media: NaCl, Phosphate Buffer Solution (PBS), and PBS with hyaluronic acid (PBS-HA). Tribocorrosion tests were carried out on a pin-on-disk tribometer with an integrated electrochemical cell. A normal load of 5N was applied on the alumina ball counterpart at a rotation rate of 120 rpm. Coefficient of friction (COF) was measured and tribocorrosion behaviour was characterized by in situ application of electrochemical techniques. HCCoCr alloy immersed in PBS-HA showed the best tribocorrosion behaviour with the lowest COF. In this case, in situ measurement of corrosion potential and the impedance data under wear corrosion process showed an active state while passive film was continuously destroyed without possibility of regeneration.

마이크로 드로플릿 셀 기법과 임계공식온도 측정 기법을 이용한 적층가공 Ti-6Al-4V 합금의 내식성 평가 (Ti-6Al-4V Alloy Fabricated by Additive Manufacturing Method Using Micro-droplet Cell and Critical Pitting Temperature Techniques and Evaluation of its Resistance to Corrosion)

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.129-137
    • /
    • 2018
  • The resistance to corrosion of additive manufactured (3D printing) Ti-6Al-4V alloys was investigated using micro-electrochemical tests. In terms of corrosion resistance, the acicular martensitic ${\alpha}^{\prime}$ phase in such additive manufactured Ti-6Al-4V was the focus of attention, and its behavior was distinct from that of conventional subtractive manufactured Ti-6Al-4V. To order to identify ${\alpha}^{\prime}$ phase, XRD tests were performed and micro Vickers hardness was measured for different grains (bright and dark grains) in the additive manufactured Ti-6Al-4V alloy. Micro-electrochemical tests were performed to measure corrosion resistance of bright and dark grains in the additive manufactured Ti-6Al-4V alloy with specially designed electrochemical micro-droplet cell. Critical pitting temperature (CPT) measurement was performed to evaluate the resistance to pitting corrosion of additive manufactured Ti-6Al-4V alloys with different volumes of ${\alpha}^{\prime}$ phase and subtractive manufactured Ti-6Al-4V alloy. The dark grains of the laminated Ti-6Al-4V alloy distributed broader than the bright grains measured with low microhardness. The dark grains of the Ti-6Al-4V alloy, which was rich in martensite ${\alpha}^{\prime}$, had lower general corrosion and pitting resistance than bright grains. As the fraction of martensite ${\alpha}^{\prime}$ phase increased, the resistance to the pitting corrosion decreased.

인공해수 침지조건에 따른 부식촉진시험과 염화물침투해석에 대한 연구 (A Study of Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Immersion Condition)

  • 박상순;정지원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.93-100
    • /
    • 2014
  • 해수중 환경에서 콘크리트 구조물 내에 매립된 철근은 용존산소의 부족으로 부식이 잘 발생하지 않는다. 이 때문에 해수중 환경의 부식촉진시험은 전기화학적인 방법으로 실시되어, 실제 부식 메커니즘과 맞지 않고 장기거동과의 상관성 도출도 어려운 실정이다. 본 연구에서는 해수중 환경에서의 부식촉진시험법을 정립하기 위해 온도와 염화물농도를 주된 변수로 부식촉진시험을 실시하였다. 부식의 발생 유무는 갈바닉 전위측정법과 반전지전위법을 통한 철근부식모니터링 결과로 판단하였다. 부식촉진시험 결과 온도의 영향이 가장 지배적이라고 평가되었다. 염화물량은 시험 시편의 깊이별 염화물 농도를 측정하였다. 동일한 조건으로 FEM 내구성 해석 프로그램인 DuCOM을 통해 염화물침투 해석을 실시하여 입증하였다. 또한, 인공해수 침지 조건에 따른 용존 산소량은 실험을 통해 구했으며 이를 통해 부식촉진시험 결과의 타당성을 검증하였다.

보수용접봉의 종류와 용접후 열처리가 용접금속부의 내식성에 미치는 영향에 관한 전기화학적 평가 (An Electrochemical Evaluation on the Corrosion Resistance of Welding Zone due to Kinds of Repair Welding Filler Metals and Post Weld Heat Treatment)

  • 신재현;문경만
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.310-316
    • /
    • 2010
  • Recently a fuel oil of the diesel engine of the marine ship is being changed with heavy oil of low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine such as cylinder liner, piston crown, spindle and seat ring of exhaust valves are predominantly increased. In particular the degree of wear and corrosion of piston crown is more seriously compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weldment of the piston crown is a unique method to prolong the its life in a economical point of view. In this case, filler metals having a high corrosion and wear resistance such as stellite 6, Inconel 625 and Inconel 718 are mainly being used for repair welding. However it has been often happened that piston crown on the ship,s job site is being actually inevitably welded with mild filler metals. Therefore in this study, filler metals such as E4301, E4313 and E4316 were welded at SS401 steel as the base metal, and corrosion property of their weld metals in the case of post weld heat treatment or not was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 0.1% $H_2SO_4$ solution. Corrosion resistance of the weld metal of E4301 was better than the other weld metals in the case of no heat treatment, however, its resistance was considerably decreased with post weld heat treatment(annealing:$625^{\circ}C$, 2 hr) compared to other weld metals. The weld metals of E4313 and E4316 showed a relatively good corrosion resistance by post weld heat treatment.

강재 수문의 부재 위치 및 설치 방향에 따른 상대 부식속도 평가 (Evaluation of Relative Corrosion Rate depending on Local Location and Installation of Structural Member in Steel Water Gate)

  • 하민균;정영수;박승훈;안진희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.16-24
    • /
    • 2019
  • 강재로 제작된 구조물의 부식량은 설치형태에 따라 상이하게 나타나므로 그에 따른 효율적인 관리가 필요하다. 본 연구에서는 강재 수문의 설치형태와 높이에 따른 부식량과 부식속도를 평가하기 위하여 설치형태와 높이에 따라 모니터링 시험체와 부식환경측정 센서를 설치하여 대기노출실험을 실시하였다. 노출기간에 따라 모니터링 시험체를 회수하여 중량감소법으로 평가된 평균부식두께와 부식환경측정센서를 통하여 계측된 갈바닉 부식전류량과의 상관관계를 이용하여 강재 수문의 설치형태와 높이에 따른 향후 부식량을 예측하였다. 본 연구 결과 수문의 가로보 수평부재는 상대적으로 가로보 스킨플레이트 부재 등의 부식손상량과 비교하면 매우 크게 발생하고 있으며, 수문 부재의 국부적 환경에 따라 부식속도가 크게 영향을 받을 수 있음을 확인할 수 있었다. 따라서 강재 수문의 국부적 부식환경 차이에 따른 부식손상 수준을 고려한 수문의 적절한 유지관리가 필요할 것으로 판단된다.

ASSESSMENT OF POSSIBILITY OF PRIMARY WATER STRESS CORROSION CRACKING OCCURRENCE BASED ON RESIDUAL STRESS ANALYSIS IN PRESSURIZER SAFETY NOZZLE OF NUCLEAR POWER PLANT

  • Lee, Kyoung-Soo;Kim, W.;Lee, Jeong-Geun
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.343-354
    • /
    • 2012
  • Primary water stress corrosion cracking (PWSCC) is a major safety concern in the nuclear power industry worldwide. PWSCC is known to initiate only in the condition in which sufficiently high tensile stress is applied to alloy 600 tube material or alloy 82/182 weld material in pressurized water reactor operating environments. However, it is still uncertain how much tensile stress is re-quired to generate PWSCC or what causes such high tensile stress. This study was performed to pre-dict the magnitude of weld residual stress and operating stress and compare it with previous experi-mental results for PWSCC initiation. For the study, a pressurizer safety nozzle was selected because it is reported to be vulnerable to PWSCC in overseas plants. The assessment was conducted by nu-merical analysis. Before performing stress analysis for plant conditions, a preliminary mock-up ana-lysis was done. The result of the preliminary analysis was validated by residual stress measurement in the mock-up. After verification of the analysis methodology, an analysis under plant conditions was conducted. The analysis results show that the stress level is not high enough to initiate PWSCC. If a plant is properly welded and operated, PWSCC is not likely to occur in the pressurizer safety nozzle.

B-Scan 초음파 측정장비를 이용한 원전 배관 침식손상 검사법 개발 (Development of Inspection Methodology for a Nuclear Piping Wall Thinning Caused by Erosion Using Ultrasonic B-Scan Measurement Device)

  • 이대영;서혁기;황경모
    • Corrosion Science and Technology
    • /
    • 제11권3호
    • /
    • pp.89-95
    • /
    • 2012
  • U.S. Electric Power Research Institute (EPRI) has developed CHECWORKS program and applied it to power plant piping lines since some lines were ruptured by flow-accelerated corrosion (FAC) in 1978. Nowadays the CHECWORKS program has been used to manage pipe wall thinning phenomena caused by FAC. However, various erosion mechanisms can occur in carbon-steel piping. Most common forms of erosion are cavitation, flashing, liquid droplet impingement erosion (LDIE), and Solid Particle Erosion (SPE). Those erosion mechanisms cause pipe wall thinning, leaking, rupturing, and even result in unplanned shutdowns of utilities. Especially, in two phase condition, LDIE damages a wide scope of plant pipelines. Furthermore, LDIE is the major culprit to cause such as power runback by pipe leaking. This paper describes the methodologies that manage wall thinning and also predict LDIE wall thinning area. For this study, current properties of two-phase condition are investigated and LDIE areas are selected. The areas are checked by B-Scan method to detect the effect of wall thinning phenomena.

Corrosion Protection of Plasma-Polymerized Cyclohexane Films Deposited on Copper

  • Park, Z.T.;Lee, J.H.;Choi, Y.S.;Ahn, S.H.;Kim, J.G.;Cho, S.H.;Boo, J.H.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.74-78
    • /
    • 2003
  • The corrosion failure of electronic devices has been a major reliability concern lately. This failure is an ongoing concern because of miniaturization of integrated circuits (IC) and the increased use of polymers in electronic packaging. Recently, plasma-polymerized cyclohexane films were considered as a possible candidate for a interlayer dielectric for multilever metallization of ultra large scale integrated (ULSI) semiconductor devices. In this paper the protective ability of above films as a function of deposition temperature and RF power in an 3.5 wt.% NaCl solution were examined by polarization measurement. The film was characterized by FTIR spectroscopy and contact angle measurement. The protective efficiency of the film increased with increasing deposition temperature and RF power, which induced the higher degree of cross-linking and hydrophobicity of the films.

Effects of Sigma ($\sigma$) Phase on the Pitting Corrosion of 25% Cr Duplex Stainless Steel; Investigations by means of Electrochemical Noise Measurement

  • Park, Chan-Jin;Kwon, Hyuk-Sang;Kim, Hee-San
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.18-25
    • /
    • 2003
  • Effects of the precipitation of $\sigma$ phase on the metastable pitting as a precursor of stable pitting corrosion and also on the progress of stale pitting of the 25Cr-7Ni-3Mo-0.25N duplex stainless steel were investigated in chloride solution. Electrochemical potential and current noises of the alloy were measured in 10 % ferric chloride solution ($FeCl_3$) with zero resistance ammeter (ZRA), and then analyzed by power spectral density (PSD) and by corrosion admittance ($A_c$) spectrum. With aging at $850^{\circ}C$, the passive film of the alloy was found to get significantly unstable as represented by power spectral density (PSD) and a transition from metastable pitting state to stable one was observed. In the corrosion admittance spectrum, the number of negative $A_c$ corresponding to the state of localized corrosion increased with aging, suggesting that the precipitation of $\sigma$ phase considerably degraded the passive film by depleting Cr and Mo around it at $\alpha/\sigma$ or $\gamma/\sigma$ phase boundaries, thereby leading to the initiation of the pitting corrosion. However, the Cr and Mo at $\alpha/\sigma$ or $\gamma/\sigma$ phase boundaries which were once depleted due to the precipitation of the $\sigma$ phase were partly replenished by the diffusion of Cr and Mo from the surrounding matrix with aging time longer. The initiation of pitting seems to be associated with the precipitation density of the $\sigma$ phase with an effective size needed to induce the sufficient depletion of Cr and Mo around it.

배기밸브 보수 용접부의 부식 특성에 관한 전기화학적 연구 (An Electrochemical Study on Corrosion Property of Repair Welding Part for Exhaust Valve)

  • 문경만;이규환;조황래;이명훈;김윤해;김진경
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.82-88
    • /
    • 2008
  • The diesel engine of the merchant ship has been aperated in severe environments more and more, because the temperature of the exhaust gas of a combustion chamber is getting higher and higher with increasing use of heavy oil of law quality, due to the significant increase in the price of oil in recent some years. As a result, the degree of wear and corrosion between exhaust valve and seat ring is more serious compared to other engine parts. Thus the repair welding of exhaust valve and seat ring is a unique method to prolong the life of the exhaust valve, from an economical point of view. In this study, the corrosion property of both weld metal and base metal was investigated using electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and polarization resistance in 5% H2SO4 solution. The test specimen was a part of an exhaust valve stem being welded as the base metal, using various welding methods. In all cases, the corrosion resistance as well as hardness of the weld metal zone was superior to the base metal. In particular, plasma welding showed relatively good properties for both corrosion resistance and hardness, compared to other welding methods. In the case of DC SMAW (Shielded metal arc welding), corrosion resistance of the weld metal zone was better than that of the base metal, although its hardness was almost same as the base metal.