• 제목/요약/키워드: Corrosion inhibitors

검색결과 149건 처리시간 0.03초

수돗물 부식성 제어를 통한 수도관 부식방지기술: 석회수 분산화장치를 이용한 미네랄 공급 효과와 영향 분석 (Corrosion control technology in water pipes by adjusting the corrosivity of drinking water : effect and impact of the lime dispersion system)

  • 한금석;박영복;김성재;김현돈;최영준;박주현;우달식;홍성호
    • 상하수도학회지
    • /
    • 제32권3호
    • /
    • pp.235-242
    • /
    • 2018
  • Corrosion inhibitors including calcium hydroxide have been used to prevent corrosion in the pipes for tap water supply. The corrosion index (i.e., Langelier Index) differs by area and water quality. The corrosion indices of the areas studied differed by more than 2.0. The 'homogenized' calcium hydroxide was added to the treated water at the K water treatment plant, in order to increase the value of the corrosion index and the concentration of calcium. As the result, the concentration of calcium was increased while the turbidity and pH changed little. The corrosion rate of the tap water with the 'homogenized' calcium hydroxide could be slowed down pretty much. The results suggested that the technology of 'homogenization' of calcium hydroxide can applied to tap water and desalinated water to prevent corrosion in water pipes even in corrosive pipes.

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • 제22권2호
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

The Application of Non-phosphorous AEC Program in Cooling Water Systems of Petrochemical Industry

  • Li, Dagang;Hong, Mike;He, Gaorong
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.16-21
    • /
    • 2008
  • A non-phosphorous program employing an alkyl epoxy carboxylate (AEC) has been successfully applied to petrochemical and other large industrial open recirculating cooling water systems. AEC is a patented non-phosphorous calcium carbonate scale inhibitor that has demonstrated better scale inhibition abilities than traditional organic phosphonates. In addition to its antiscalant properties, AEC inhibits carbon steel corrosion when used at high dosages. AEC can be combined with zinc to form a non-phosphorous program with very low levels of phosphate to provide an environmentally acceptable program. In actual applications, the total phosphate developed in the cooling system from cycling the makeup is below 1 ppm as $PO_4$. This level has complied with the highest standards of wastewater discharge limitations. The performance of two AEC/Zinc applications is reviewed. In both cases excellent corrosion and scale control were achieved with AEC/Zinc programs. One case history details the performance with a low hardness water (100 ppm calcium, as $CaCO_3$) operating at 8-10 cycles of concentration. The corrosive nature of the water and the long retention time of the system stressed both the corrosion and scale control capabilities of the program. The second case history demonstrates the performance of the program with a moderate hardness water (400-600 ppm calcium, as $CaCO_3$), but under harsh conditions of high temperature and low flow. The AEC/zinc combination has been found to be highly effective in controlling the corrosion of ferrous metals. AEC can provide good corrosion inhibition at high concentrations, while zinc is known to be an excellent cathodic inhibitor. The combination of the two inhibitors not only provides a synergistic blend that is effective over a wide range of operating conditions, but also is environmentally friendly.

Synthesis of Polyamine Grafted Chitosan Copolymer and Evaluation of Its Corrosion Inhibition Performance

  • Li, Heping;Li, Hui;Liu, Yi;Huang, Xiaohua
    • 대한화학회지
    • /
    • 제59권2호
    • /
    • pp.142-147
    • /
    • 2015
  • Two new chitosan derivatives, polyamine grafted chitosan copolymers have been synthesized for corrosion protection of carbon steel in acidic medium. First, methyl acrylate graft chitosan copolymer (CS-MAA) was prepared by the reaction of chitosan (CS) and methyl acrylate (MAA) via the Michael addition reaction. Then, CS-MAA was reacted with ethylene diamine (EN) and triethylene tetramine (TN) respectively to synthesize ethylene diamine grafted chitosan copolymer (CS-MAA-EN) and triethylene tetramine grafted chitosan copolymer (CS-MAA-TN), and the structures were characterized by Fourier-transform infrared spectroscopy (FT-IR). At last, the corrosion inhibition activities on Q235 carbon steel were investigated by using gravimetric measurements, metallographic microscope, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The compounds CS-MAA-EN and CS-MAA-TN show an appreciable corrosion inhibition property against corrosion of Q235 carbon steel in 5% HCl solution at $25^{\circ}C$. It has been observed that CS-MAA-EN shows greater corrosion inhibition efficiency than CS-MAA-TN. The inhibition efficiency of CS-MAA-EN was close to 90% when the mass fraction concentration was 0.2%~0.3%; the inhibition efficiency of CS-MAA-TN was close to 85% when the mass fraction concentration was 0.02%. The present work provided very promising results in the preparation of green corrosion inhibitors.

Evaluation of the inhibitive characteristics of 1,4-dihydropyridine derivatives for the corrosion of mild steel in 1M $H_2SO_4$

  • Sounthari, P.;Kiruthika, A.;Sai santhoshi, J.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.65-78
    • /
    • 2013
  • The present investigation deals with the corrosion inhibition of mild steel in 1M $H_2SO_4$ with 1, 4-dihydro pyridine and its derivatives prepared using microwave activation method. The synthesis of inhibitor was confirmed by IR spectra. The effect of 1, 4-dihydropyridine derivatives on the corrosion inhibition of mild steel in 1M $H_2SO_4$ was studied using weight loss and electrochemical polarization techniques. Influence of temperature (303-333K) and synergistic effect of halide ions ($I^-$, $Br^-$ and $Cl^-$) on the inhibition behaviour was also studied. Corrosion products on the metal surface were analyzed by scanning electron microscopy (SEM) and a possible mechanism of inhibition by the compounds is suggested. Thermodynamic parameters were calculated using weight loss data in order to elaborate the mechanism of corrosion inhibition. Polarization measurements revealed that the studied compounds acted as mixed type inhibitor but slightly anodic in nature. Electrochemical impedance measurements revealed that the compounds were adsorbed onto the carbon steel surface and the adsorption obeyed the Langmuir adsorption isotherm. The synergistic effect of halide ions on the IE increases with increase in concentration. The IE obtained from atomic absorption spectrophotometric studies was found to be in good agreement with that obtained from the conventional weight loss method. SEM revealed the information of a smooth, dense protective layer in presence of the inhibitors.

Effect of Zn/Al Cation Ratio on Corrosion Inhibition Capabilities of Hydrotalcites Containing Benzoate Against Carbon Steel

  • Thu Thuy, Pham;Anh Son, Nguyen;Thu Thuy, Thai;Gia Vu, Pham;Ngoc Bach, Ta;Thuy Duong, Nguyen;To Thi Xuan, Hang
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.434-444
    • /
    • 2022
  • Corrosion inhibitors based on Zn-Al hydrotalcites containing benzoate (ZnAlHB) with different molar ratios of Zn/Al were prepared with a co-precipitation process. Compositions and structures of the resulting hydrotalcites were studied with suitable spectroscopic methods such as inductively coupled plasma mass spectrometry (ICP-MS), ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and surface zeta potential measurements, respectively. Results of physico-chemical studies showed that crystallite sizes, compositions of products, and surface electrical properties were significantly changed when the molar ratio of Zn/Al was increased. The release of benzoate from hydrotalcites also differed slightly among samples. Anticorrosion abilities of hydrotalcites intercalated with benzoate at a concentration of 3 g/L on carbon steel were analyzed using electrochemical impedance spectroscopy (EIS), polarization curve, energy-dispersive X-ray spectroscopy (EDX), and SEM. Corrosion inhibition abilities of benzoate modified hydrotalcites in 0.1 M NaCl showed an upward trend with increasing Zn/Al ratio. The reason for the dependence of corrosion resistance on the Zn/Al ratio was discussed, including changes in the microstructure of hydrotalcites such as crystal size, density, uniformity, and formation of ZnO.

SCC Inhibitors for SG Tube Materials in Nuclear Power Plants

  • Kim, Kyung-Mo;Lee, Eun-Hee;Kim, Uh-Chul
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.585-586
    • /
    • 2006
  • Several chemicals were studied to suppress the damage due to stress corrosion cracking (SCC) of steam generator (SG) tubes in nuclear power plants. The effects on the SCC of the compounds, $TiO_2$, TyzorLA and $CeB_6$, were tested for several types of SG tubing materials. The test with the addition of $TiO_2$ and $CeB_6$ showed an effect in decreasing the SCC for the SG tubing material. However, $CeB_6$ caused some more SCC for Alloy 800. The penetration property into a crevice of the inhibitors was investigated by using Alloy 600 specimens with different gap.

  • PDF

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

탄소강 부식 억제제로서 알칸 티올의 Ab-initio DFT 모델링 (Ab-initio DFT Modeling of Alkanethiols as Carbon Steel Corrosion Inhibitors)

  • 핫산 라기즈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.91-92
    • /
    • 2021
  • In the present work, we simulated and explained the bonding of three alkanethiols - hexanethiol (HT), decanethiol (DT), and 11-mercaptoundecanoic acid (MDA) - with Fe(110) surface and Fe2 clusters using Density Functional Theory (DFT) to probe the corrosion inhibition mechanisms. The interaction energies computed from periodic DFT calculations successfully predicted the experimental inhibition performance. We have found strong covalent bond formation between S(thiol) and Fe-atoms in both approaches, further confirmed by the projected density of states and electron density difference. Besides, natural bond orbital (NBO) charge distribution showed that DT had stronger electron-donation and back-donation synergic interactions with Fe-atoms.

  • PDF

Experimental and Theoretical Study on Corrosion Inhibition of Mild Steel in Oilfield Formation Water Using Some Schiff Base Metal Complexes

  • Mahross, M.H.;Efil, Kursat;El-Nasr, T.A. Seif;Abbas, Osama A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.222-235
    • /
    • 2017
  • First, in this study, the inhibition efficiencies of metal complexes with Cu(II), Ni(II) and Zn(II) of STSC ligand for corrosion control of mild steel in oilfield formation water were investigated. The IEs for a mixture of 500 ppm STSC and 5 ppm metal ion ($Cu^{+2}$, $Ni^{+2}$, $Zn^{+2}$) were found to be 88.77, 87.96 and 85.13 %, respectively. The results were obtained from the electrochemical techniques such as open circuit potential, linear and tafel polarization methods. The polarization studies have showed that all used Schiff base metal complexes are anodic inhibitors. The protective film has been analyzed by FTIR technique. Also, to detect the presence of the iron-inhibitor complex, UV-Visible spectral analysis technique was used. The inhibitive effect was attributed to the formation of insoluble complex adsorbed on the mild steel surface and the adsorption process follows Langmuir adsorption isotherm. The surface morphology has been analyzed by SEM. Secondly, the computational studies of the ligand and its metal complexes were performed using DFT (B3LYP) method with the $6-311G^{{\ast}{\ast}}$ basis set. Finally, it is found that the experimental results were closely related to theoretical ones.