• Title/Summary/Keyword: Corrosion density

Search Result 754, Processing Time 0.025 seconds

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Effects of Chloride Concentration and Applied Current Density on Stray Current Corrosion Characteristics of 6061-T6 Al Alloy for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 6061-T6 알루미늄합금의 전식 특성에 미치는 염화물농도 및 인가전류밀도의 영향)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.348-359
    • /
    • 2022
  • Interest in electric vehicle is on the rise due to global eco-friendly policies. To improve the efficiency of electric vehicles, it is essential to reduce weights of components. Since electric vehicles have various electronic equipment, the research on stray current corrosion is required. In this research, a galvanostatic corrosion experiment was performed on 6061-T6 Al alloy for electric vehicle battery housing using chloride concentration and applied current density as variables in a solution simulating an acid rain environment. As a result of the experiment, when chloride concentration and applied current density were increased, corrosion damage became larger. In particular, pitting damage was dominant at an applied current density of 0.1 mA/cm2. Pitting damage over the entire surface was found at a current density of 1.0 mA/cm2. In conclusion, chloride concentration had a relatively large effect on localized corrosion. The applied current density had a great effect on uniform corrosion. However, in the case of applied current density, localized corrosion was also greatly affected by interaction with chloride.

Influence of Redox Potential Current Density on Polarization Curves with Polypropylene Polymer

  • Park, Chil-Nam;Kim, Myung-Sun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • Experiments were carried out to measure the corrosion potential and current density variations in the polarization curves of polypropylene. In particular, the results were examined to identify those influences affecting the corrosion potential, such as temperature, pH, salt, and oxygen. The Tafel slope for the anodic dissolution was determined based on the polarization effect under various conditions. Furthermore, the optimum conditions for the most rapid transformation were establish based on a variety of conditions, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(I(sub)r/I(sub)f). This I(sub)r/I(sub)f value was then used to measure the critical corrosion sensitivity of polypropylene. The potentiodynamic parameters of corrosion were obtained using a Tafel plot.

  • PDF

Corrosion Rate of Buried Pipeline by Alternating Current

  • Song, H.S.;Kim, Y.G.;Lee, S.M.;Kho, Y.T.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • An alternating current (AC) corrosion on buried pipeline has been studied using coupon and ER probe. Coupons and ER probes were applied to the sites from high value of AC voltage to low value based on the survey of AC voltages on buried gas transmission pipeline over the country. Parameters such as AC current density of coupon, AC voltage, cathodic protection potential, soil resistivity and frequency were monitored continually. Corrosion induced by AC was observed even under cathodically protected condition that met cathodic protection criterion (; below -850 mV vs. CSE). Corrosion rate was affected mainly not by AC voltage but by both of frequency and AC current density. An experimental corrosion rate relation could be obtained according to effective AC current density, in which AC corrosion rate increased linearly with effective AC current density, and its slope was 0.619 in coupon method and 0.885 in ER probes.

Effect of Applied Current Density on the Corrosion Damage of Steel with Accelerated Electrochemical Test (전기화학적 가속 부식 평가법에서 강재의 부식 손상에 미치는 인가전류밀도의 영향)

  • Lee, Jung-Hyung;Park, Il-Cho;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.5
    • /
    • pp.423-430
    • /
    • 2016
  • In this study, we investigated the corrosion damage characteristics of steel for offshore wind turbine tower substructure using an accelerated electrochemical test. The galvanostatic corrosion test method was employed with a conventional 3 electrode cell in natural sea water, and the steel specimen was served as a working electrode to induce corrosion in an accelerated manner. Surface and cross-sectional image of the damaged area were obtained by optical microscope and scanning electron microscope. The weight of the specimens was measured to determine the gravimetric change before and after corrosion test. The result revealed that the steel tended to suffer uniform corrosion rather than localized corrosion due to active dissolution reaction under the constant current regime. With increasing galvanostatic current density, the damage depth and surface roughness of surface was increased, showing approximately 25 times difference in damage depth between the lowest current density ($1mA/cm^2$) and the highest current density ($200mA/cm^2$). The gravimetric observation showed that the weight loss was proportionally increased with increment of current density that has 75 times different according by experimental conditions. Consequently, uniform corrosion of the steel specimen was conveniently induced by the electrochemically accelerated corrosion technique, and it was possible to control the extent of the corrosion damage by varying the current density.

Mitigation of steel corrosion in concrete by electrochemical chloride extraction at the AI-supporting electric source

  • Jiseok Kim;Ki Yong Ann;Woongik Hwang
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.631-642
    • /
    • 2024
  • The present study concerns the corrosion mitigation of electrochemical chloride extraction (ECE) in concrete structure. Concrete specimen was fabricated with 5.0% chloride in cast, while the other specimen was exposed to 4.0M NaCl solution for 1 year to accelerate corrosion of steel. Then, the ECE was applied to the concrete specimen with 1000 mA/m2 of the current density for 2, 4 and 8 weeks, respectively. During the ECE, the corrosion current density and corrosion potential were regularly monitored. As a result, the ECE was very effective in mitigating the degree of corrosion on the steel surface. The corrosion current density was significantly reduced from thousands to decades mA/m2, while the corrosion potential was mostly shifted to positive direction. Assuming that the corrosion starts at 1.0 mA/m2 of the corrosion current density or/and -275 mV vs SCE of the corrosion potential, the ECE could not fully achieve the repassivation of the steel, although its degree was lowered more or less depending on the duration of the treatment and type of chloride contamination. A visual examination confirmed that an increase in the duration of the treatment could lower the rust formation, but never fully removed all rust stains.

Affect of Corrosion Potential and Current Density on Polarization Curves Variations of Polyvinylchloride[II]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.159-167
    • /
    • 1999
  • This study performed experiments for measuring corrosion potential and current density variations in the polarzation curves of polyvinylchloride. The results were examined to identify particular influences affectingthe corrosion potential such as temperature, pH, enzyme, and salt. The lines representing active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme and salt. The Tafel slope for the anodic dissolution was determined using the polarization effect with varying conditions. The slope of the polarization curves describing the active-to-passive transition region was noticeably shifted in the potential direction. In addition, using the variation in conditions, the best temperature and pH were determined for the corrosion rate, and resistance of corrosion. The second anodic current density peak and maximum passive current density were designated as degraded(IP/I0). The value of IP/I0 was used in measuring the extent of the degradation of the polyvinychloride. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF

Investigation on Electrolytic Corrosion Characteristics with the Variation of Current Density of 5083-H321 Aluminum Alloy in Seawater (5083-H321 알루미늄 합금의 해수 내 전류밀도의 변화에 따른 전식 특성 연구)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Electrolytic corrosion of the ship's hull can be occurred due to stray current during welding work using shore power and electrical leakage using shore power supply. The electrolytic corrosion characteristics were investigated for Al5083-H321 through potentiodynamic polarization and galvanostatic corrosion test in natural seawater. Experiments of electrolytic corrosion were tested at various current densities ranging from $0.01mA/cm^2$ to $10mA/cm^2$ for 30 minutes, and at various applied time ranging from 60 to 240 minutes. Evaluation of electrolytic corrosion was carried out by Tafel extrapolation, weight loss, surface analysis after the experiment. In the electrolytic corrosion characteristics of Al5083-H321 as the current density increased, the surface damage tended to proportionally increase. In the current density of $0.01mA/cm^2$ for a applied long time, the damage tended to grow on the surface. In the case of $10mA/cm^2$ current density for a applied long time, the damage progressed to the depth direction of the surface, and the amount of weight loss per hour increased to 4 mg/hr.

The Effect of Acidic Environments on the Corrosion-Wear of Cr Plating (크롬도금의 부식-마멸에 미치는 산성환경의 영향)

  • 곽남인;임우조
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.211-216
    • /
    • 2003
  • This paper was studied on the corrosion and corrosion-wear behavior of chromium (Cr) plating in the acidic environments. In the various pH of acidic solutions, the electrochemical polarization test and wear-corrosion test of Cr plating were carried out. And thus potential, corrosion current density and corrosion-wear loss behaviour of Cr plating are investigated.

Influence of Corrosion Potential and Current Density on Polarization Curve Variations using Polycarbonate[III]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu;Kim, Myung-Sun;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves using polycarbonate. The results were particularly examined to identify the influences affecting the corrosion potential including various conditions such as temperature, pH, catalytic enzyme, and salt. The lines representing the active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme, and salt. The tafel slope for the anodic dissolution was determined based on the polarization effect with various conditions. The slope of the polarization curves describing the active-to-passive transition region were noticeably shifted in direction. Also, from the variation in the conditions, the optimum conditions were established for the most rapid transformation, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(Ir/If). The value of Ir/If was then used in measuring the extent of the critical corrosion sensitivity of the polycarbonate. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF