• Title/Summary/Keyword: Corrosion characteristics

Search Result 1,425, Processing Time 0.03 seconds

The Effects of Processing Parameters on Surface Hardening Layer Characteristics of Low Temperature Plasma Nitriding of 316L Austenitic Stainless Steel (316L 오스테나이트계 스테인리스강의 저온 플라즈마질화처리시 공정변수가 표면경화층 특성에 미치는 영향)

  • Lee, Insup
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • A systematic investigation was made on the influence of processing parameters such as gas composition and treatment temperature on the surface characteristics of hardened layers of low temperature plasma nitrided 316L Austenitic Stainless Steel. Various nitriding processes were conducted by changing temperature ($370^{\circ}C$ to $430^{\circ}C$) and changing $N_2$ percentage (10% to 25%) for 15 hours in the glow discharge environment of a gas mixture of $N_2$ and $H_2$ in a plasma nitriding system. In this process a constant pressure of 4 Torr was maintained. Increasing nitriding temperature from $370^{\circ}C$ to $430^{\circ}C$, increases the thickness of S phase layer and the surface hardness, and also makes an improvement in corrosion resistance, irrespective of nitrogen percent. On the other hand, increasing nitrogen percent from 10% to 25% at $430^{\circ}C$ decreases corrosion resistance although it increases the surface hardness and the thickness of S phase layer. Therefore, optimized condition was selected as nitriding temperature of $430^{\circ}C$ with 10% nitrogen, as at this condition, the treated sample showed better corrosion resistance. Moreover to further increase the thickness of S phase layer and surface hardness without compromising the corrosion behavior, further research was conducted by fixing the $N_2$ content at 10% with introducing various amount of $CH_4$ content from 0% to 5% in the nitriding atmosphere. The best treatment condition was determined as 10% $N_2$ and 5% $CH_4$ content at $430^{\circ}C$, where the thickness of S phase layer of about $17{\mu}m$ and a surface hardness of $980HV_{0.1}$ were obtained (before treatment $250HV_{0.1}$ hardness). This specimen also showed much higher pitting potential, i.e. better corrosion resistance, than specimens treated at different process conditions and the untreated one.

Effects of pulsed laser surface remelting on microstructure, hardness and lead-bismuth corrosion behavior of a ferrite/martensitic steel

  • Wang, Hao;Yuan, Qian;Chai, Linjiang;Zhao, Ke;Guo, Ning;Xiao, Jun;Yin, Xing;Tang, Bin;Li, Yuqiong;Qiu, Shaoyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1972-1981
    • /
    • 2022
  • A typical ferritic/martensitic (F/M) steel sheet was subjected to pulsed laser surface remelting (LSR) and corrosion test in lead-bismuth eutectic (LBE) at 550 ℃. There present two modification zones with distinct microstructures in the LSRed specimen: (1) remelted zone (RZ) consisting of both bulk δ-ferrite grains and martensitic plates and (2) heat-affected zone (HAZ) below the RZ, mainly composed of martensitic plates and high-density precipitates. Martensitic transformation occurs in both the RZ and the HAZ with the Kurdjumov-Sachs and Nishiyama-Wassermann orientation relationships followed concurrently, resulting in scattered orientations and specific misorientation characteristics. Hardnesses of the RZ and the HAZ are 364 ± 7 HV and 451 ± 15 HV, respectively, considerably higher than that of the matrix (267 ± 3 HV). In oxygen-saturated and oxygen-depleted LBE, thicknesses of oxide layers developed on both the as-received and the LSRed specimens increase with prolonging corrosion time (oxide layers always thinner under the oxygen-depleted condition). The corrosion resistance of the LSRed F/M steel in oxygen-saturated LBE is improved, which can be attributed to the grain-refinement accelerated formation of dense Fe-Cr spinel. In oxygen-depleted LBE, the growth of oxide layers is very low with both types of specimens showing similar corrosion resistance.

Characteristics of Al2O3, Cr2O3, WC-Ni, and Chromizing Surface Coatingsunder Environment with HighTemperature, Wear, and Corrosion (고온, 마모 및 부식환경에 적용가능한 Al2O3, Cr2O3, WC-Ni 및 크로마이징 코팅층의 기계적 특성 평가)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.895-900
    • /
    • 2013
  • Several plasma spray and metallurgical surface coatings such as $Al_2O_3$, $Cr_2O_3$, WC-Ni, and chromizing coating have been examined for their application in environments with high temperature, wear, and corrosion. The chromizing coating is different from others coatings in the manufacturing process the surface. These coatings' characteristics were tested experimentally, and the results were compared. WC-Ni shows good performance against thermal barrier, wear, and corrosion and is one of the best candidates for the environment considered herein. These coatings were studied for their application in the steel manufacturing industry. The most commonly required functions in this industry are thermal and wear resistance.

A Study on the Flow-Accelerated Corrosion Characteristics of Galvanically Coupled Dissimilar Metals. (이종금속 연결에 따른 침부식(FAC) 특성에 관한 연구)

  • Kim, Jung-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.269-272
    • /
    • 2000
  • The flow accelerated galvanic corrosion characteristics of a carbon steel coupled to stainless steel were investigated in deaerated alkaline-chloride solutions as a function of flow velocities(0, 0.2, 0.4 and 0.6 m/s), pH(8, 9, and 10) and temperature(25, 50 and $75^{\circ}C$). The electrochemical properties of specimens were investigated by potentiodynamic test and galvanic corrosion test using RCE(Rotating Cylinder Electrode). Carbon steel did not show passive behavior in the alkaline-chloride solution. The galvanic current density increases with increasing flow velocity and temperature, but decreased with increasing pH. Flow velocity had a small effect on the galvanic current density at $25^{\circ}C$, whereas the flow velocity increased galvanic current density significantly at $50^{\circ}C$ and $75^{\circ}C$. This might be due to the increased solubility of magnetite at the higher temperature.

  • PDF

A Study on the Pb-Ca-Sn Grid Alloy of Positive Plate in Lead-Acid Battery (납축전지에서 양극판의 Pb-Ca-Sn 그리드 합금에 관한 연구)

  • Ku, Bon-Keun;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.518-524
    • /
    • 2008
  • In this study, positive plates of lead acid battery of Pb-Ca alloy and Pb-Ca-Sn alloy were fabricated and the mechanical characteristics of positive plates were measured. This study observed how the changes of content of Ca & Sn affect interface corrosion which is located in between grid & active materials and lead acid batteries as well. The mechanical characteristics of grid alloy is better when Ca is 0.05 wt.% then 0.1 wt.%. This study said that the corrosion rate between the active material based on the charge/discharge cycle of lead acid battery and grid interface is much faster than a grid which contains Sn. And furthermore, according to the study the rate 30 of Sn/Ca which is added to grid shows the best performance.

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

Study on characteristics of SCC and AE signals for the weld HAZ of HT-60 steel under corrosion control (부식제어하에서 HT-60강 용접부의 SCC 및 AE 신호 특성에 관한 연구)

  • 나의균;고승기
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.241-244
    • /
    • 1999
  • The purpose of this study is to examine the characteristics of stress corrosion cracking(SCC) and acoustic emission(AE) signals for the weld HAZ of HT-60 steel under corrosion control in synthetic seawater. Corrosive environment was controlled by potentiostat, and SCC experiment was conducted using a slow strain rate test method at strain rate of 10$^{-5}$ /sec. In order to verify the miroscopic fracture behaviour of the weldment during SCC phenomena, AE test was done simultaneously. Besides, correlationship between mechanical parameters and AE ones was investigated. In case of the parent, reduction of area(ROA) at -0.5V was samller than any other applied voltage such as -0.8V and -1.1V. In addition, reduction of area for the PWHT specimens at -0.8mV was larger than that of the weldment due to the softening effect according to PWHT. In case of the weldment, a lots of events was produced because of the singularities of the weld HAZ compared with the parent.

  • PDF

Characteristics and Improvement of Tap Water Corrosivity in Korea (국내 수돗물의 부식성 특성 및 개선방안)

  • Kim, Jin-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.731-739
    • /
    • 2011
  • To investigate corrosivity characteristics of tap water in Korea, Langelier index (LI) of 30 multi-regional water treatment plants (WTPs) were evaluated. Weekly LI values of 30 WTPs were all negative, which means tap water in Korea might be very corrosive. Maximum LI decrease through water treatment processes was 0.95 under no additional corrosion control process. Based on the correlation results between LI and tap water qualities, pH and calcium concentration were confirmed as major parameters for LI control. Addition of calcium hydroxide with $CO_{2}$ or calcium hydroxide or sodium hydroxide can be chosen based on water quality. Continuous monitoring of LI and related parameters is recommended in water distribution system.

A Study on the Bond Strength of Coated Rebar in Concrete (콘크리트중 코팅철근의 부착응력에 대한 기초적 연구)

  • 문한영;김성수;류재석;김성섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.127-132
    • /
    • 1996
  • Recently in the country a corrosion of steel is accelerated due to using of sea sand including salts, and critical problem on the durability of concrete structure is occured. Thus a control of steel corrosion is very important in the stability of structure. Coated steel is in use with a method of steps of steel corrosion in U.S,A. Japan etc, and as well in domestic case the manufactured coating steel of three types is on the market. Those are Epoxy coated steel, Zinc-strength, concrete specimen size, bar diameter, which can affect bond characteristics between steel and concrete in order to know their relative bond characteristics.

  • PDF

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Weldments (A106 Gr B강 용접열영향부에서의 피로균열성장특성)

  • 김철한;조선영;김복기;배동호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.263-268
    • /
    • 1999
  • With HAZ of A 106 Gr B steel weldment, fatigue test in air, electrochemical polarization test and corrosion fatigue test in 3.5wt.% NaCl solution were performed changing load ratio. Obtained results are as follows. 1) K$\sub$op/ was independent of K$\sub$max/ and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure 3) In the result of electrochemical polarization test, current density was increased abruptly when potential was larger than corrosion potential. 4) Fatigue crack growth rate in corrosive environment was markly higher than the rate in air because of corrosion characteristics of the material and anodization of inner surface crack.

  • PDF