• 제목/요약/키워드: Corrosion addition

검색결과 860건 처리시간 0.026초

Evaluation of Metals (Al, Fe, Zn) in Alternative Fuels by Electrochemical Impedance Spectroscopy in Two Electrode Cell

  • Song, Yon-Kyun;Lim, Geun-Woong;Kim, Hee-San
    • Corrosion Science and Technology
    • /
    • 제9권2호
    • /
    • pp.92-97
    • /
    • 2010
  • Many kinds of alternative fuels such as biodiesel, ethanol, methanol, and natural gas have been developed in order to overcome the limited deposits in fossil fuels. In some cases, the alternative fuels have been reported to cause degrade materials. The corrosion rates of metals were measured by immersion test, a kind of time consuming test because low conductivity of these fuels was not allowed to employ electrochemical tests. With twin two-electrode cell newly designed for the study, however, electrochemical impedance spectroscopy (EIS) test was successfully applied to evaluation of the corrosion resistance ($R_p$) of zinc, iron, aluminum, and its alloys in an oxidized biodiesel and gasoline/ethanol solutions and the corrosion resistance from EIS was compared with the corrosion rate from immersion test. In biodiesel, $R_p$ increased in the order of zinc, iron, and aluminum, which agreed with the corrosion resistance measured from immersion test. In addition, on aluminum showing the best corrosion resistance ($R_p$), the effect of magnesium as an alloying element was evaluated in gasoline/ethanol solutions as well as the oxidized biodiesel. $R_p$ increased with addition of magnesium in gasoline/ethanol solutions containing chloride and the oxidized biodiesel. In the mean while, in gasoline/ethanol solutions containing formic acid, Al-Mg alloy added 1% magnesium had the highest $R_p$ and the further addition of magnesium decreased $R_p$. It can be explained with the fact that the addition of more than 1% magnesium increases the passive current density of Al-Mg alloys.

Study on the Corrosive Characters of Carbon Steel in the Marine Splash Zone

  • Zhu, Xiangrong;Han, Bing
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.26-29
    • /
    • 2003
  • This study determined that the four corrosive characters of carbon steel in the marine splash zone (MSZ) in China's four sea areas. It has a range and a corrosion peak value. The rust in the MSZ plays the role of "depolarizer" in the cathodic process of corrosion. The growth law of the rust layer in MSZ has a character of "annual ring". In addition the reasons causing serious corrosion of carbon steel in the marine splash zone has been discussed in this paper.

염소이온 함유된 용액에서 Ti합금의 부식특성에 미치는 Hafnium함량의 영향 (Effects of Hafnium Addition on the Pitting Corrosion Behavior of Ti Alloys in Electrolyte Containing Chloride Ion)

  • 김성환;최한철
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.191-195
    • /
    • 2012
  • The aim of this study was to investigate effects of hafnium content on the corrosion behavior of Ti alloys in electrolyte containing chloride ion. For this study, Ti-Hf binary alloys contained 10 wt%, 20 wt% and 30 wt% Hf were manufactured in a vacuum arc-melting furnace and subjected to heat treatment for 12h at $1000^{\circ}C$ in an argon atmosphere. The pitting corrosion behavior of the specimens was examined through potentiodynamic and potentiostatic tests in 0.9 wt% NaCl electrolyte at $36.5{\pm}1^{\circ}C$. The corrosion morphology of Ti-xHf alloys was investigated using optical microscopy (OM) and X-ray diffractometer (XRD). From the optical microstructures and XRD results, needle-like martensite ($\alpha$') phases of the Ti-xHf alloys increased with an increase of Hf addition. Corrosion current density $(I_{corr})$ and current density $(I_{300mV})$ in passive region decreased, whereas, corrosion potential increased with Hf content. At the constant potential ($300mV_{SCE}$), current density decreased as time increased.

전기화학적 부동태화에 의한 동관의 내식성 개선 연구 (Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation)

  • 민성기;김경태;황운석
    • Corrosion Science and Technology
    • /
    • 제10권4호
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.

The Effect of Heat Input and Shielding Gas Composition on Corrosion Resistance of TIG Weld Metal of New Lean Duplex Stainless Steel S82441

  • Niagaj, J.;Brytan, Z.
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.278-284
    • /
    • 2017
  • The effects of TIG welding and post-treatment procedures on the microstructure and the pitting corrosion resistance of welded lean duplex stainless steel S82441 were investigated. Autogenous TIG welding was used with different amounts of heat input and shielding gases such as Ar, and mixtures of $Ar-N_2$ and Ar-He. The addition of 5% to 15% of nitrogen to argon practically did not affect the level of the pitting corrosion resistance. However, the application of gas mixtures (50% Ar + 50% He) resulted in a significant decrease in pitting corrosion resistance. We found that increased current (200 A and 250 A) led to lower values of CPT of welds compared with welds obtained with 50 A, 100 A and 150 A. In addition, the removal of the weld surface layer (0.2 ~ 0.3 mm thickness) in most cases not only resulted in a significant increase in resistance to the pitting corrosion but also post-treatment of weld, implying that corrosion resistance depended on factors such as surface roughness or the presence of undesirable oxides.

Pb 기판/활물질 계면의 부식층형성에 미치는 합금원소영향 (Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface)

  • 오세웅;최한철
    • 한국표면공학회지
    • /
    • 제40권5호
    • /
    • pp.225-233
    • /
    • 2007
  • Effects of alloying elements on the corrosion layer formation of Pb-grid/active materials interface has been researched for improvement of corrosion resistance of Pb-Ca alloy. For this research, various amounts of alloying elements such as Sn, Ag and Ba were added to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test. Overcharge life cycle test was carried out at $75^{\circ}C$, 4.5 A, for 110 hrs. with KS standard (KSC 8504). And then, after keeping the battery with open circuit state for 48 hr, discharge was carried out at 300A for 30 sec. Corrosion morphology and interface between Pb-grid and active materials were investigated by using ICP, SEM, WDX, and LPM. Corrosion layer of Pb-Ca alloy got thicken with increasing Ca content. For Pb-Ca-Sn alloy, thickness of corrosion layer decreased as Sn and Ag content increased gradually. In case of Pb-Ca-Sn-Ba alloy, thickness of corrosion layer decreased up to 0.02 wt% Ba addition, whereas, it was not changed in case of above 0.02 wt% Ba addition.

산성 용액에서 고크롬 주철의 전면 부식 거동 (General Corrosion Behavior of High Chromium Cast Iron in an Acid Solution)

  • 이준섭;이준형;오준석;이재현
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.367-372
    • /
    • 2021
  • The effect of carbon addition on the general corrosion behavior of high-chromium cast iron (HCCI) was studied by a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) or electron back-scattered diffraction (EBSD), or electrochemical polarization techniques in 0.1 mol dm-3 H2SO4 + 0.05 mol dm-3 HCl at room temperature. The addition of 2.1-2.8 wt% carbon to HCCI increased the fraction of eutectic austenite and eutectic carbide phases, while that of HCCI decreased the fraction of the primary austenitic phase. Potentiostatic polarization of the HCCI at -0.35 VSSCE or 0.0 VSSCE resulted in preferential general corrosion of the primary austenitic or eutectic austenitic phases, respectively. The decrease in corrosion current density and the shift in noble corrosion potential direction with increasing carbon content in the HCCI indicated that the fraction and the chemical composition of austenitic (primary and eutectic) and carbide phases were strongly related to the general corrosion behavior of the HCCI.

부식억제제에 의한 상수도관의 피막 형성 및 수질개선 효과 (Coating formation of water supply pipes by inhibitor and water quality improvement effect)

  • 임재철;김진근;구자용
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.97-106
    • /
    • 2012
  • To investigate the application of corrosion inhibitor on water supply pipes, turbidity, magnitude of corrosion, composition of scale and concentration of metals from an old steel pipe were analysed under inhibitor addition. The concentration of turbidity, iron and copper from the pipes under inhibitor application was 12 ~ 14% of the case which no inhibitor was applied, which suggests the application of inhibitor was very effective for internal corrosion control. In addition, SEM, EDX, XRD and XRF test results showed that application of inhibitor was effective for the decrease of iron concentration and increase of oxygen, phosphorus and calcium concentration, which suggested the existence of protective layer. Therefore, the occurrence of red water will be significantly decreased when inhibitor was applied to the old steel pipes.

Effect of Zinc Addition in Filler Metal on Sacrificial Anode Cathodic Protection of Fin-Tube Aluminum Heat Exchanger

  • Yoon-Sik So;Eun-Ha Park;Jung-Gu Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.349-360
    • /
    • 2023
  • This study investigated the tri-metallic galvanic coupling of different metals in the tubes, fillers, and fins of a heat exchanger. The goal was to prevent corrosion of the tubes using the fin as a sacrificial anode while ensuring that the filler metal has a more noble potential than the fin, to avoid detachment. The metals were arranged in descending order of corrosion potential, with the noblest potential assigned to the tube, followed by the filler metal and the fin. To address a reduction in protection current of the fin, the filler metal was modified by adding Zn to decrease its corrosion potential. However, increasing the Zn content of filler metal also increases its corrosion current. The study examined three different filler metals, considering their corrosion potential, and kinetics. The results suggest that a filler metal with 1.5 wt.% Zn addition is optimal for providing cathodic protection to the tube while reducing the reaction rate of the sacrificial anode.

Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica

  • Louis, Hamenu;Lee, Young-Gi;Kim, Kwang Man;Cho, Won Il;Ko, Jang Myoun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1795-1799
    • /
    • 2013
  • The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.