• Title/Summary/Keyword: Corrosion addition

Search Result 871, Processing Time 0.022 seconds

Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet (초고강도급 자동차용 강재 내 ε-carbide (Fe2.4C)가 부식 및 수소확산거동에 미치는 영향)

  • Park, Jin-seong;Yun, Duck Bin;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.295-307
    • /
    • 2021
  • Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering treatments conducted at below A1 temperatures had a significant influence on corrosion kinetics. Compared to a steel sample with cementite (Fe3C), a steel sample with ε-carbide (Fe2.4C) showed higher corrosion resistance during a long-term exposure to a neutral aqueous solution. In addition, the diffusion kinetics of hydrogen atoms formed by electrochemical corrosion reactions in the steel matrix with ε-carbide were slower than the steel matrix with cementite because of a comparatively higher binding energy of hydrogen with ε-carbide. These results suggest that designing steels with fine ε-carbide distributed uniformly throughout the matrix can be an effective technical strategy to ensure high resistance to hydrogen embrittlement induced by aqueous corrosion.

Corrosion Behavior of Bimetal Materials (Fe-Ni / Fe-Ni-Mo) for Electromagnetic Switches (전자 개폐기용 바이메탈 소재(Fe-Ni / Fe-Ni-Mo)의 부식거동)

  • Yu-Jeong An;Eun-Hye Hwang;Jae-Yeol Jeon;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.478-483
    • /
    • 2023
  • This study examined the corrosion behavior of bimetal materials composed of Fe-Ni alloy and Fe-Ni-Mo alloy, both suitable for use in electromagnetic switches. Electrochemical polarization and weight loss measurements revealed that, in contrast to Fe-Ni alloy, which exhibited pseudo-passivity behavior, Fe-Ni-Mo alloy had higher anodic current density, displaying only active dissolution and greater weight loss. This indicated a lower corrosion resistance in the Fe-Ni-Mo alloy. Equilibrium calculations for the phase fraction of precipitates suggested that the addition of 1 wt% Mo may lead to the formation of second-phase precipitates, such as Laves and M6C, in the γ matrix. These precipitates might degrade the homogeneity of the passive film formed on the surface, leading to localized attacks during the corrosion process. Therefore, considering the differences in corrosion kinetics between these bimetal materials, the early degradation caused by galvanic corrosion should be prevented by designing a new alloy, optimizing heat treatment, or implementing periodic in-service maintenance.

A Study on the Applicability of Corrosion Inhibitor for Outdoor Copper Alloy

  • Shin, Jeong Ah;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.259-271
    • /
    • 2018
  • Outdoor copper alloy is exposed to the atmospheric environment, accelerating corrosion progress compared with indoor copper alloy. In order to prevent corrosion, the outdoor copper alloy is coated with wax to block external corrosion factors. However, corrosion of the inside of the coating film is highly likely to continue without the internal corrosion prevention treatment. B.T.A, which is used as a copper alloy water-soluble corrosion inhibitor, has a high possibility of being harmful to the human body and is mainly used to treat excavated artifacts. This study had selected the water-soluble corrosion inhibitor, which was easier to use than the existing wax and B.T.A being used in corrosion inhibition treatment for outdoor copper alloy. A comparative study was conducted on B.T.A, which is a water-soluble corrosion inhibitor used on excavated artifacts, and $VCI^{(R)}$, $Rus^{(R)}$, and L-cys, an amino acid corrosion inhibitor, used for tin bronze test pieces. The experimental method was conducted for a certain period of time with the salt, acid, and air pollution affecting the corrosion of outdoor copper alloy. Based on experiment results, it was concluded that the best water - soluble copper alloy corrosion inhibitor in the atmospheric environment is $VCI^{(R)}$. and it could be considered to be applied in replacement of B.T.A due to its low harmfulness. In addition, $VCI^{(R)}$ is judged to serve as a corrosion inhibitor for outdoor copper alloy because it showed the best result even in the outdoor exposure test which is a real atmospheric environment.

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Effects of Mg on corrosion resistance of Al galvanically coupled to Fe (Fe와 galvanic couple된 알루미늄의 내식성에 미치는 마그네슘의 영향)

  • Hyun, Youngmin;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.40-49
    • /
    • 2013
  • Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [$Cl^-$] around 0.025 M of [$Cl^-$] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.

Change in Corrosion Resistance of Solution-Treated AZ91-X%Sn Magnesium Alloys (용체화처리한 AZ91-X%Sn 마그네슘 합금의 부식 저항성 변화)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • The effects of Sn addition and solution treatment on corrosion behavior were studied in AZ91 magnesium casting alloy. The addition of 5%Sn contributed to the introduction of $Mg_2Sn$ phase, to the reduction in dendritic cell size and to the increase in the amount of secondary phases. After the solution treatment, trace amount of $Al_8Mn_5$ particles were observed in the ${\alpha}$-(Mg) matrix for the AZ91 alloy, while $Mg_2Sn$ phase with high thermal stability was additionally found in the AZ91-5%Sn alloy. Before the solution treatment, the AZ91-5%Sn alloy had better corrosion resistance than the Sn-free alloy, which is caused by the enhanced barrier effect of the (${\beta}+Mg_2Sn$) phases formed more continuously along the dendritic cell boundaries. It is interesting to note that after the solution treatment, the corrosion rate of both alloys became increased, but the Sn-added alloy showed higher corrosion rate than the Sn-free alloy. The microstructural examination on the corroded surfaces revealed that the remaining $Mg_2Sn$ particles in the solution-treated AZ91-5%Sn alloy play a role in accelerating corrosion by galvanic coupling with the ${\alpha}$-(Mg) matrix.

A study on corrosion resistance and surface properties of AZ31 alloy according to Ca-GP addition during PEO treatment (PEO 처리시 Ca-GP첨가에 따른 AZ31합금의 내식성 및 표면특성에 관한 연구)

  • Lee, Jun-Su;Park, Je-Shin;Park, Il-Song
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.238-247
    • /
    • 2021
  • PEO (plasma electrolytic oxidation) was applied to modify the surface of AZ31 magnesium alloy in this study. The mixed solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) was used as the electrolyte, and 0 - 0.05 g/L of Ca-GP (Glycerol Phosphate Calcium salt) was added in the electrolyte as an additive. PEO treatment was conducted at a current density of 30mA/cm2 for 5 minutes using a DC power supply. The surface properties were identified by SEM, XRD and surface roughness analyses, and the corrosion resistance was evaluated by potentiodynamic polarization and immersion tests. In addition, the biocompatibility was evaluated by immersion test in SBF solution. As the concentration of Ca-GP was increased, the surface morphology was denser and more uniform, and the amount of Ca and the thickness of oxide layer increased. Only Mg peak was observed in XRD analysis due to very thin oxide layer. The corrosion resistance of PEO-treated samples increased with the concentration of Ca-GP in comparision with the untreated sample. In particular, the highest corrosion resistance was identified at the group of 0.04g Ca-GP through potentiodynamic polarization and immersion tests in saline solution (0.9 wt.%NaCl). During the immersion in saline solution, pH rapidly increased at the beginning of immersion period due to rapid corrosion, and then increase rate of pH decreased. However, the pH value in the SBF temporarily increased from 7.4 to 8.5 during the day, then decreased due to the inhibition of corrosion with HA(hydroxyapatite) formation.

Mesoscale model for cracking of concrete cover induced by reinforcement corrosion

  • Chen, Junyu;Zhang, Weiping;Gu, Xianglin
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • Cracking of concrete cover induced by reinforcement corrosion is a critical issue for life-cycle design and maintenance of reinforced concrete structures. However, the critical degree of corrosion, based on when the concrete surface cracks, is usually hard to predict accurately due to the heterogeneity inherent in concrete. To investigate the influence of concrete heterogeneity, a modified rigid-body-spring model, which could generate concrete sections with randomly distributed coarse aggregates, has been developed to study the corrosion-induced cracking process of the concrete cover and the corresponding critical degree of corrosion. In this model, concrete is assumed to be a three-phase composite composed of coarse aggregate, mortar and an interfacial transition zone (ITZ), and the uniform corrosion of a steel bar is simulated by applying uniform radial displacement. Once the relationship between radial displacement and degree of corrosion is derived, the critical degree of corrosion can be obtained. The mesoscale model demonstrated its validity as it predicted the critical degree of corrosion and cracking patterns in good agreement with analytical solutions and experimental results. The model demonstrates how the random distribution of coarse aggregate results in a variation of critical degrees of corrosion, which follows a normal distribution. A parametric study was conducted, which indicates that both the mean and variation of critical degree of corrosion increased with the increase of concrete cover thickness, coarse aggregates volume fraction and decrease of coarse aggregate size. In addition, as tensile strength of concrete increased, the average critical degree of corrosion increased while its variation almost remained unchanged.

Experimental Study on Carbon Corrosion of Gas Diffusion Layer in PEM Fuel Cell (고분자전해질형 연료전지 가스확산층의 탄소 부식에 관한 실험적 분석)

  • Ha, Taehun;Cho, Junhyun;Park, Jaeman;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.76.1-76.1
    • /
    • 2010
  • Recently, many efforts to solve the durability problem of PEM fuel cell are carried on constantly. However, despite this attention, durability researches of gas diffusion layer (GDL) are not much reported yet. Generally, GDL of PEM fuel cell experiences three external attacks, which are dissolution of water, erosion of gas flow, corrosion of electric potential. In this study, among these degradation factors, carbon corrosion of electric potential was focused and investigated with accelerated carbon corrosion test. Through the test, it is confirmed that carbon corrosion occurred at GDL, and corroded GDL decreased a performance of operating fuel cell. The property changes of GDL were measured with various methods such as air permeability meter, pore distribution analyzer, thermo gravimetric analyzer, and tensile stress test to discover the effects of carbon corrosion. Carbon corrosion caused not only loss of weight and thickness, but also degradation of mechanical strength of GDL. In addition, to analysis the reason of GDL property changes, a surface and a cross section of GDL were observed with scanning electron microscope. After 100 hours test, the GDL showed serious damage in center of layer.

  • PDF

Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression

  • Liang, Hongjun;Jiang, Yanju;Lu, Yiyan;Hu, Jiyue
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • Twenty-two corrosion-damaged columns were simulated through accelerated steel corrosion tests. Eight specimens were directly tested to failure under axial load, and the remaining specimens were tested after concrete-filled steel tube (CFST) strengthening. This study aimed to investigate the damage of RC columns after corrosion and their restoration and enhancement after strengthening. The research parameters included different corrosion degrees of RC columns, diameter-to-thickness ratio of steel tube and the strengthening concrete strength. Experimental results showed that CFST strengthening method could change the failure mode of corrosion-damaged RC columns from brittleness to ductility. In addition to the bearing capacity provided by the strengthening materials, it can also provide an extra 26.7% amplification because of the effective confinement provided by steel tubes. The influence of corrosion on reinforcement and concrete was quantitatively analysed and considered in the design formula. The proposed formula accurately predicted the bearing capacity of the strengthened columns with a maximum error of only 7.68%.