• Title/Summary/Keyword: Corrosion Protection

Search Result 561, Processing Time 0.028 seconds

Seismic behavior of thin-walled CFST pier-to-base connections with tube confined RC encasement

  • Xuanding Wang;Yue Liao;Jiepeng Liu;Ligui Yang;Xuhong Zhou
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.217-235
    • /
    • 2024
  • Concrete-filled steel tubes (CFSTs) nowadays are widely used as the main parts of momentous structures, and its connection has gained increasing attention as the complexity in configuration and load transfer mechanism. This paper proposes a novel CFST pier-to-footing incorporating tube-confined RC encasement. Such an innovative approach offers several benefits, including expedited on-site assembly, effective confinement, and collision resistance and corrosion resistance. The seismic behavior of such CFST pier-to-footing connection was studied by testing eight specimens under quasi-static cyclic lateral load. In the experimental research, the influences on the seismic behavior and the order of plastic hinge formation were discussed in detail by changing the footing height, axial compression ratio, number and length of anchored bars, and type of confining tube. All the specimens showed sufficient ductility and energy dissipation, without significant strength degradation. There is no obvious failure in the confined footing, while local buckling can be found in the critical section of the pier. It suggests that the footing provides satisfactory strength protection for the connection.

A Study on the Development of Solid Reference Electrode and Remote Protection Potential Measuring System (고체기준전극 및 원격전위측정 시스템 개발에 관한 연구)

  • Ryou, Young-don;Kim, Jin-Jun;Kim, Dong-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.38-43
    • /
    • 2015
  • For buried gas pipelines, cathodic protection system shall be installed to protect against corrosion. The surveys of pipe-to-soil potentials for the gas pipelines should be carried out at the test box more than once a year. In urban, the test box is usually located on the driveway, therefore, it is difficult to measure the potentials. That is, traffic control is needed when carrying out the measurements of the potentials on daytime, or measurements of pipe-to-soil potentials at the test box located on the driveway have to be carried out in the late night when the traffic is light. We have developed remote potential monitoring system using the solid reference electrode and the wireless communication technology for the purpose of removing above problems. We have installed the developed solid reference electrodes at a site and monitored the potentials by wireless communication. Measured potential values were transferred to the server in office and analyzed. We have found the pipe-to-soil potentials transferred to the web server make no difference to the potentials measured directly on the site.

A Study on the Characteristics Assessment and Fabrication of Distribution Board according to KEMC Standards (KEMC 규정에 의한 분전반의 제작 및 특성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2017
  • This study fabricated a low-voltage 10 circuit distribution board based on the KEMC (Korea Electrical Manufacturers Cooperative) 2102-610 standard and performed a characteristics assessment of the developed 10 circuit distribution board to secure product stability. The developed 10 circuit distribution board is designed to have the characteristics of insulation materials, as well as resistance to corrosion ultraviolet radiation and mechanical impact. The developed distribution board is fabricated to have an appropriate protection class of enclosure, electric shock prevention and protection circuits, switchgear and its components, internal electrical circuits and connectors, external conduct terminal, insulation characteristics, temperature rise test, heat resistance, etc. The developed 10 circuit distribution board consists of a single phase circuit and 3-phase circuits. It is possible to measure in real time the leakage current generated from the load distribution line by installing a sensor module at the load side of each of the branched switchgears. In addition, it is possible to increase a circuit according to the use and purpose of the load and to also manage and check the load in real time. Temperature rise tests were performed on the developed 10 circuit distribution board at 18 places including the inlet connection, main circuit and distribution circuit bus bars and bus bar supports, etc. The highest temperature of $65.3^{\circ}C$ was measured at the R-Phase of the connection of the MCCB power supply for the branch circuit bus bar and a temperature rise of $61.6^{\circ}C$ was measured at the T-Phase of the load side. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state.

The Effects of Silica Sol and Modified Latex on the Concrete Surface Protection Cement Mortar for Improvement of Durability of Concrete (콘크리트 내구성 향상을 위한 표면 보호용 시멘트 모르타르에서 실리카 및 개질 라텍스의 영향)

  • Kim, Yong-Hoon;Jeaong, Cheol-Soo;Song, Myong-Shin;Lee, Woong-Geol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.715-722
    • /
    • 2019
  • The durability of concrete structures deteriorates due to the corrosion of rebars and concrete deterioration by harmful ions (CO32-, Cl-, SO42-) penetrating and diffusing from the outside into concrete. Therefore, the use of surface-protection finishing mortar is very important for preventing or delaying the deterioration of concrete. In this study, the possibility of the prevention of deterioration or delay of deterioration of concrete was investigated using natural latex modified with silica sol and calcium ions for cement mortar, which can be used to repair the mortar of deteriorated concrete or for finishing the mortar of concrete. As a result, fine calcium silicate hydrate was formed in the pores of the cement material due to the calcium ions and silica sol components contained in the modified latex component that reduce the pore distribution of the cement mortar, thereby reducing the penetration and diffusion of harmful ions (CO32-, Cl-, and SO42-). Furthermore, the latex component was found to be present in the pores of the cement to improve the alkali resistance and carbonation resistance.

Radiation Field in PWR Plants (PWR 발전소에서의 방사선장 특성)

  • Song, Myung-Jae;Kim, Hee-Keun;Kim, Bong-Hwan;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.2
    • /
    • pp.61-70
    • /
    • 1992
  • Photon, neutron and beta radiation fields were measured at PWR plants which are the representative types of nuclear power plant operated in Korea. The photon energy spectra were measured at locations in the auxiliary building during operation period and in the containment vessel(C/V) during shutdown period using a portable gamma spectrometer with a HPGe detector. The distribution of average energy was found to range from 440 to 780 keV in the C/V and from 280 keV to 760 keV in the auxiliary building, respectively. The average neutron energy measured at the five locations around the operation deck in the C/V in operation using a BMSS (Bonner Multi-Sphere Spectrometer) ranged from 20 keV to 210 keV. A computer code, BUNKI was used to unfold the spectrum. The beta energy spectra in the C/V and in the auxiliary building in annual outage were determined using 14 smear samples taken from the highly contaminated areas. The analysis showed that the representative corrosion product, $^{60}Co$ made main contribution to the beta energy field.

  • PDF

The Characteristic Analysis of Calcareous Deposit Films Formed on Steel Plate by Cathodic Current Process in Marine Environment (해양환경 중 음극전류 프로세스에 의해 강판에 형성된 석회질 피막의 특성 분석)

  • Park, Jun-Mu;Kang, Jae Wook;Choi, In-Hye;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Cathodic protection is widely recognized as the most cost effective and technically appropriate corrosion prevention methodology for the port, offshore structures, ships. When applying the cathodic protection method to metal facilities in seawater, on the surface of the metal facilities a compound of calcium carbonate($CaCO_3$) or magnesium hydroxide($Mg(OH)_2$) films are formed by $Ca^{2+}$ and $Mg^{2+}$ ions among the many ionic components dissolving in the seawater. And calcareous deposit films such as $CaCO_3$ and $Mg(OH)_2$ etc. are formed by the surface of the steel product. These calcareous deposit film functions as a barrier against the corrosive environment, leading to a decrease in current demand. On the other hand, the general calcareous deposit film is a compound like ceramics. Therefore, there may be some problems such as weaker adhesive power and the longer time of film formation uniting with the base metal. In this study, we tried to determine and control the optimal condition through applying the principle of cathodic current process to form calcareous deposit film of uniform and compact on steel plate. The quantity of precipitates was analyzed, and both the morphology, component and crystal structure were analyzed as well through SEM, EDS and XRD. And based on the previous analysis, it was elucidated mechanism of calcareous deposit film formed in the sacrificial anode type (Al, Zn) and current density (1, 3, $5A/m^2$) conditions. In addition, the taping test was performed to evaluate the adhesion.

Enhancement of Surface Hardness of Stainless Steel by Laser Peening (레이저피닝을 이용한 스테인리스강의 표면 경도 강화)

  • Lim, H.T.;Lee, M.H.;Kim, P.K.;Park, J.B.;Jeong, S.H.
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.18-22
    • /
    • 2009
  • Experimental results for the laser shock peening of stainless steels, duplex stainless steel and STS304, for the enhancement of surface hardness are reported. A high power Nd:YAG laser (532 nm, 2nd harmonics) was used to irradiate the workpiece in water at the irradiances of 5, 10, $15\;GW/cm^2$. The surface of a workpiece was covered with Fe or Al foil for protection of the original surface and reduction of laser reflection. The laser pulse densities were varied from $25\;pulse/mm^2$ to $75\;pulse/mm^2$. In the case of the STS304, the surface hardness increased with increasing pulse density and the maximum increase of about 29% was achieved using Fe foil at $10\;GW/cm^2$ and $75\;pulse/mm^2$ conditions. The maximum increase in surface hardness of duplex stainless steel was about 8% at $10\;GW/cm^2$ and $75\;pulse/mm^2$ with also Fe foil. In the case of the Al foil, less increase of surface hardness was obtained, possibly due to the thermal expansion effect.

  • PDF

A Study on Reliability Analysis and Quantitative Risk Analysis for Liquefied Petroleum Gas Station (LPG 충전시설에 대한 신뢰도 분석과 정량적 위험성 분석에 관한 연구)

  • Kim In-Won;Jin Sang-Hwa;Kim Tea-Woo;Kim In-Tae;Yeo Yeong-Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.40-48
    • /
    • 2001
  • For a Liquified Petroleum Gas(LPG) station, the reliability analysis, such as Fussell-Vesely importance, risk decrease factor and risk increase factor, was carried out and the risk ranks of events were determined. In order to confirm the degree of the risks identified in the reliability analysis, the quantitative risk analysis was done for the equipments which had the large values of risk ranks. As a result of the importance analysis for the LPG station, the external event was identified as the most riskful event. The defect of construction structure and the pipe corrosion were riskful as well. The result of quantitative risk analysis showed that the length of 46.3 meters were estimated to damage the process equipments by the thermal flux from the catastrophic rupture of storage tank in Boiling Liquid Expanding Vapor Explosion.

  • PDF

Crashworthiness Evaluation of Bridge Barriers Built with Hot-dip Zinc-aluminium-magnesium Alloy-coated Steel (고내식성 용융합금도금강판 적용 교량난간의 충돌성능 평가)

  • Noh, Myung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • This paper proposes road safety facilities applying Hot-dip zinc-aluminum-magnesium alloy-coated steel sheets and coils to reduce the loss of function caused by the corrosion of steel in the service state. Vehicle crash simulations and full-scale crash tests were carried out to provide reliable information on evaluating the crash performance with the products of road safety facilities built with hot-dip zinc-aluminum-magnesium alloy-coated steel. From the results of the simulations and full-scale crash tests, the impact behaviors evaluated by the three-dimensional crash simulations considering the strain-rate dependency in a constitutive model were similar to those obtained from the full-scale crash test results. The full-scale crash test results met the crashworthiness evaluation criteria; hence, the proposed bridge barrier in this paper is ready for field applications.

A Study of Built-Up Repair Welding for Stainless Steel Propulsion Shafting (스테인리스강 프로펠러축계의 육성 용접에 대한 연구)

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.119-125
    • /
    • 2007
  • In recent days, the consumption of stainless steel in the propulsion shafting systems for small-medium class vessel is increased due to its high corrosion protection with wear resistant properties. Unfortunately the small and medium class vessel that operated in the west-south sea area of Korean peninsula experienced heavy wear down due to the role of mud. In the event of wear or broken down, the propeller shaft must be replaced by new one, but the new shaft is very expensive and time-consuming for order made supply. In this case, the methods of built up for wear and broken shaft by welding is one of the most effective cases. In this study, the built up welding for austenitic stainless steel shaft has been accomplished by various pre-surface treatment, welding methods, post heattreatment and inspection. The results confirmed that the built-up welding was one of the effective methods for stainless steel shafting.

  • PDF