• Title/Summary/Keyword: Corrosion Product

Search Result 216, Processing Time 0.025 seconds

Chemical Cleaning of Copper Corrosion Product Using EDTA.2Na Salt and Effect of Surface Treatment by NALCO-39L (EDTA.2Na를 이용한 구리 부식생성물의 화학세정 및 NALCO-39L에 의한 표면처리효과)

  • 이한철;이창우;현성호
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.86-92
    • /
    • 1999
  • This study was carried out to investigate the effect of chemical cleaning of corrosion product on cooling system made of copper as a basic material and using cooling water as pure water. We studied chemical cleaning condition that minimizes the influence on basic material by means of EDTA solution so as to eliminate the slurry in cooling system. In addition, the proper amount of NALCO-39L (Nitrite-Borate-BZT mixture) as a inhibitor was determined in order to protect the copper in cooling system against corrosion after chemical cleaning and the effect of corrosion resistance on the copper surface treated was excelent in comparison with surface untreated. As a result, we found that the main components of sludge in cooling system produced by corrosion of copper were $Cu_2O$, CuO, Cu, and Fe. The optimum condition of chemical cleaning was 400ppm EDTA solution at $60^{\circ}C$. Inhibitor concentration needed to treat the surface of pure copper was 15~20ppm per unit area and corrosion rate of copper treated with 500ppm inhibitor solution for 72 hrs at $60^{\circ}C$ was remarkably decreased as compared with that of pure copper.

  • PDF

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.

A Study on Radioactive Source-term Assessment Method for Decommissioning PWR Primary System (PWR 1차계통내 해체 방사성선원항 평가방법에 관한 연구)

  • Song, Jong Soon;Kim, Hyun-Min;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.153-164
    • /
    • 2014
  • Currently, there are many programs which are now being developed or already developed to predict radionuclide and corrosion product at the stage of designing NPP. However, since there are not many developments in evaluating quantity of activation corrosion products occurring when disassembling a nuclear power plant there exist some difficulties in calculating accurately. In order to evaluate activation products inventory for the research of effect of neutron activation in the reactor vessel, component of nuclear reactor and adjacent structures, it should be evaluated by using operation history of nuclear reactor, material composition of structure and average neutron flux in every field representing fixed structure of nuclear reactor. In this study, CORA, PACTOLE, CRUDSIM, CREAT and ACE codes are analyzed to predict the quantity of radionuclide and corrosion product of primary reactor which is used at the stage of designing. As a future study, the accuracy in calculating the quantity of product corrosion can be increase by finding out the possibility of use and improvement for evaluation of the decontamination.

Electrochemical Analysis of the Microbiologically Influenced Corrosion of Steels by Sulfate-Reducing Bacteria

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Seong-Jong;Shin, Sung-Kyu;Koh, Sung-Cheol
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.187-193
    • /
    • 2004
  • We have investigated the differences between the general corrosion and microbiologically influenced corrosion (MIC) of steels in terms of electrochemical behavior and surface phenomena. Corrosion potential of steels in the absence of SRB (sulfate-reducing bacteria) shifted to a low level and was maintained throughout the experimental period (40 days). The potential in the presence of SRB, however, shifted to a noble level after 20 days' incubation, indicating the growth of SRB biofilms on the test metal specimens and a formation of corrosion products. In addition, the color of medium inoculated with SRB changed from gray to black. The color change appeared to be caused by the formation of pyrites (FeS) as a corrosion product while no significant color change was observed in the medium without SRB inoculation. Moreover, corrosion rates of various steels tested for MIC were higher than those in the absence of SRB. This is probably because SRB were associated with the increasing corrosion rates through increasing cathodic reactions which caused reduction of sulfate to sulfide as well as formation of an oxygen concentration cell. The pitting corrosions were also observed in the SRB-inoculated medium.

Study on the Simulation of Crud Formation using Piping Materials of Nuclear Power Plant in High Temperature Water (원자력 발전소 배관재를 이용한 고온 수화학 조건에서의 방사화 부식생성물 모사에 관한 연구)

  • Kim Sang Hyun;Kim In Sup;Lee Kun Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.31-40
    • /
    • 2005
  • High temperature - high pressure apparatus was developed to simulate nickel fewite corrosion products which were main compositions of the radioactive crud in the nuclear power plant. Corrosion product similar to the crud was obtained by a tube accumulator system. Nickel alloy (Inconel 690) and carbon steel (SA106 Gr. C) were corroded at 270 $\^{circ}C$ in the corrosion product generator. Ni ions and Fe ions dissolved by corrosion reaction were able to be transported to the accumulator because the crud generation mechanism was the solubility change with temperature. To evaluate the properties of simulated corrosion products, scanning electron microscope (SEM) observation and EDAX analysis were performed. SEM observation of corrosion product showed the needlelike or crystal structure of oxide depending on precipitating location. The crystal oxide was the nickel ferrite, which was similar to the crud in nuclear power plants.

  • PDF

Comparison of Quantitative Analysis of Radioactive Corrosion Products Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Choo, Young Sun
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • Radioactive corrosion product specimens were analyzed using an electron probe microanalyzer (EPMA) and X-ray image mapping. It is difficult to analyze the composition of radioactive corrosion products using an EPMA due to the size and rough shape of the surfaces. It is particularly challenging to analyze the composition of radioactive corrosion products in the form of piled up, small grains. However, useful results can be derived by applying a semi-quantitative analysis method using an EPMA with X-ray images. A standard-less, semi-quantitative method for wavelength dispersive spectrometry. EPMA analysis was developed with the objective of simplifying the analytical procedure required. In this study, we verified the reasonable theory of semi-quantitative analysis and observed the semi-quantitative results using a sample with a good surface condition. Based on the validated results, we analyzed highly rough-surface radioactive corrosion products and assessed their composition. Finally, the usefulness of the semi-quantitative analysis was reviewed by verifying the results of the analysis of radioactive corrosion products collected from spent nuclear fuel rods.

Corrosion of Silver by Outgassing from Rubber

  • Sakai, Jun'ichi;Omoda, Masataka;Ishikawa, Yuichi
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.130-133
    • /
    • 2008
  • Corrosion of silver by outgassed sulfur species from rubber has been investigated by means of quartz crystal microbalance technique (QCM) and cathodic reduction technique. Silver specimens were placed together with a rubber of predefined quantity in an enclosed environment. Corrosion progressed linearly with time and silver sulfide was found as the corrosion product during all the tests. No significant dependence on RH was observed, while the corrosion rate increased as temperature rose. Furthermore the corrosion rate increased logarithmically with the quantity of the rubber placed in the exposure environment. It may be suggested that the corrosion rate of silver is determined by the amount of outgassed sulfur species which is a function of temperature and the quantity of rubber contained in the exposure environment.

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Study of Corrosion Characteristics of Corroded Iron Objects from Underwater by Sulfides (해저 철제유물의 황화물에 의한 부식특성 연구)

  • Kim, Taek Joon;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.29 no.2
    • /
    • pp.187-196
    • /
    • 2013
  • This study is on the corrosion of iron objects caused by sulfides in undersea environment. The corrosion state of objects in seawater and their damage state after underwater and left in highly humid air were studied. The samples of this study were four iron objects which had been taken out from undersea mud layer located in Taean Mado, Chungcheongnamdo. SEM-EDS and XRD analyse on the objects to check whether they have sulfides or not. The result of analysis suggested that the major component of corrosion product generated in undersea deposit soil is sulfur(S) and iron sulfide(FeS) is formed as sulfide. However, there was no clear corrosion on the surface of objects which was exposed to sea water because of the impact of concretion which covered the surface. In order to check the damage status of iron objects after they had been taken out of sea water, exposure tests in high humidity environment and dehumidified environment were done on the corrosion products. The result of the test suggested that the oxidization of iron sulfide corrosion product makes iron sulfate ($FeSO_4$) and sulfuric acid ($H_2SO_4$) and they can cause secondary corrosion of iron objects. Therefore, it is believed that the iron sulfide corrosion product of iron objects taken out from underwater environment should be removed by all means and the keeping environment of the iron objects should also maintain dehumidified state.

The Effect of Shot Peening on the Corrosion and Fatigue Crack to SAE5155 Steel (SAE 5155강에서 쇼트피닝이 부식과 피로균열특성에 미치는 영향)

  • Park, Kyeong-Dong;Shin, Yung-Jin;Kim, Dong-Ug
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.731-739
    • /
    • 2006
  • Corrosion and lassitude are very important in the metal construction Currently, the shot peening is used much for removing the defect on the surface, improving the fatigue strength on surface. In this study. the influence of shot peening to the corrosion property were investigated in 3.5% NaCl, 10% HNO3 + 3% HF. 6% FeC13. The immersion test was performed on two kind of specimen(Removed corrosion product. RCP and Continuous immersed specimen: CIS). The immersion periods was 3600hours. Corrosion potential. weight loss, and fatigue crack growth characteristics were investigated. The result, shot peening in corrosion potential showed stable potential. Also, shot peening displayed small Weight loss than un peening. And Fatigue crack resistivity of shot peening in corrosion solution's fatigue crack appeared greatly than un peening.