• Title/Summary/Keyword: Corrosion Pit

Search Result 99, Processing Time 0.046 seconds

Estimation of Stress Intensity Factors for 3-Dimensional Surface Defects under Axial Tensile Loads Using the Finite Element Method

  • Jeon, Byung-Young;Kumar, Y.V. Satish;Kang, Sung-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.267-272
    • /
    • 2002
  • Pitting corrosion is a very common occurrence in marine structures. Therefore, the 3-D finite element analysis is carried out to determine the stress intensity factors at the pit depth and also at the surface of the pit. The pits are modeled as a part of sphere, based on the pit depth and the pit diameter as specified by the Ship Structural Committee. The pit depth and pit diameter are function of the percentage of pitting that the plate is subjected to. A dog-bone shaped specimen is subjected to different intensities of pitting and the stress intensity factors are determined under axial tensile loads.

  • PDF

Effect of Cr content on the FAC of pipe material at 150℃ (150℃에서 원전 2차측 배관재료의 Cr함량에 따른 유체가속부식 특성)

  • Park, Tae Jun;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.274-279
    • /
    • 2013
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. During the FAC, a protective oxide layer on carbon steel dissolves into flowing water leading to a thinning of the oxide layer and accelerating corrosion of base material. As a result, severe failures may occur in the piping and equipment of NPPs. Effect of alloying elements on FAC of pipe materials was studied with rotating cylinder FAC test facility at $150^{\circ}C$ and at flow velocity of 4m/s. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO) and temperature. Test solution was the demineralized water, and DO concentration was less than 1 ppb. Surface appearance of A 106 Gr. B which is used widely in secondary pipe in NPPs showed orange peel appearance, typical appearance of FAC. The materials with Cr content higher than 0.17wt.% showed pit. The pit is thought to early degradation mode of FAC. The corrosion product within the pit was enriched with Cr, Mo, Cu, Ni and S. But S was not detected in SA336 F22V with 2.25wt.% Cr. The enrichment of Cr and Mo seemed to be related with low, solubility of Cr and Mo compared to Fe. Measured FAC rate was compared with Ducreaux's relationship and showed slightly lower FAC rate than Ducreaux's relationship.

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

Research for the Evaluation of Corrosion Fatigue Crack Initiation Life (해수환경중 부식피로균열 발생수명 평가에 관한 연구)

  • Kim, Won-Beom;Paik, Jeom-Kee;Yajima, Hiroshi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • With regard to corrosion fatigue crack initiation life (Nc), it has been treated ambiguously for the member which doesn't have stress concentration area. In this research, in order to clarify the corrosion fatigue crack initiation life (Nc), corrosion fatigue tests were carried out. Reasonable and universal corrosion fatigue crack initiation life (Nc) was defined and corrosion fatigue crack initiation/propagation model was suggested also. As the fatigue crack which emanates from the pit is usually small, accordingly it is treated as a small crack. In addition, the observation of the corrosion fatigue fracture surfaces using SEM was conducted. And the fracture mechanics analysis using an intrinsic crack model was conducted for the treatment of the small crack. Finally, the followings were obtained. When there is no clear stress concentration point which seems to fall into a corrosion fatigue crack initiation life, the significance of the definition and suggestion of the moment of the reasonable and universal corrosion fatigue crack initiation life (Nc), at which the fatigue crack propagation rate becomes faster than the corrosion pit growth rate so that the fatigue crack initiates from the pit and propagates in earnest, has been clarified.

The Effect of Corrosion Pit Repairing Method on the Strength of Marine Propeller (선박용 프로펠러의 강도에 대한 부식Pit 보수수법의 영향)

  • 임명환;김태식;정의정;윤한용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.124-131
    • /
    • 2004
  • It is inevitable that corrosion pits have occurred on the marine propeller. If corrosion pits have occurred on the blades, they have been repaired by simple welding methods. It must be that the strength is degraded in this process. In this paper, we analyzed and compared the strength of A1BC3 and HBsCl used for marine propeller after repairing the artificial pit by several different methods.

Inhibition of Pitting Corrosion Failure of Copper Tubes in Wet Sprinkler Systems (스프링클러 구리배관의 공식 파손 억제)

  • Suh, Sang Hee;Suh, Youngjoon;Lee, Jonghyuk;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2020
  • The inhibition of pitting corrosion failure of copper sprinkler tubes in wet sprinkler systems was studied. First, an apparatus and technology for removing air in the sprinkler tubes by vacuum pumping and then filling the tubes with water were developed. Using this apparatus and technology, three methods for inhibiting the pitting corrosion of the copper sprinkler tubes installed in several apartment complexes were tested. The first one was filling the sprinkler tubes with water bubbled by high-pressure nitrogen gas to reduce the dissolved oxygen concentration to lower than 2 ppm. In the second method, the dissolved oxygen concentration of water was further reduced to lower than 0.01 ppm by sodium sulfite. In the third method, the sprinkler tubes were filled with benzotriazole (BTAH) dissolved in water. The third method was the most effective, reducing the failure frequency of the sprinkler tubes due to pitting corrosion by more than 80%. X-ray photoelectron spectroscopy analyses confirmed that a Cu-BTA layer was well coated on the inside surface of the corrosion pit, protecting it from corrosion. A potentiodynamic polarization test showed that BTAH should be very effective in reducing the corrosion rate of copper in the acidic environment of the corrosion pit.

Use of Hydrazine for Pitting Corrosion Inhibition of Copper Sprinkler Tubes: Reaction of Hydrazine with Corrosion By-Products

  • Suh, Sang Hee;Kim, Sohee;Suh, Youngjoon
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.247-256
    • /
    • 2017
  • The feasibility of using hydrazine for inhibiting pitting corrosion in copper sprinkler tubes was investigated by examining microscopical and structural evolution of corrosion by-products with SEM, EDS, and XRD. Hydrazine removed dissolved oxygen and reduced CuO and $Cu_2O$ as well. The stable phase was changed from CuO to $Cu_2O$ or Cu depending on hydrazine concentration. Hydrazine concentration of 500 ppm could convert all CuO corrosion by-products to $Cu_2O$. In a tightly sealed acryl tube filled with aqueous solution of 500 ppm hydrazine, octahedral $Cu_2O$ particles were formed while plate-like structures with high concentration of Cu, O, N and C were formed near a corrosion pit. The inside structure of a corrosion pit was not altered by hydrazine aqueous solution. Uniform corrosion of copper was almost completely stopped in aqueous solution of 500 ppm hydrazine. Corrosion potential of a copper plate was linearly dependent on log (hydrazine concentration). The concept of stopping pitting corrosion reaction by suppressing oxygen reduction reaction could be verified by applying this method to a reasonable number of real sprinkler systems before full-scale application.

Investigation of Pitting Corrosion of Copper Heat-Return Pipe in District Heating (지역난방 구리난방환수관의 공식 원인 분석)

  • Keun Hyung Lee;Min Ji Song;Tae Uk Kang;Woo Cheol Kim;Heesan Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.315-323
    • /
    • 2024
  • This work examined pitting corrosion failure of a copper heat-return pipe used in a district heating system. The copper pipe was corroded with a 48% reduction in thickness due to localized corrosion on the inner surface exposed to heating water of 20 ~ 40 ℃. Fe and Si elements as corrosion products were found around pits. Cl element was also observed, which accelerated oxidation of copper inside pits. Cu2O deposits on the pit's bottom surface decreased the pH inside the pit. X-ray diffraction analysis revealed hematite, cuprite, malachite and brochantite as corrosion products. Chemical analysis demonstrated that Fe and Si elements did not exist in the copper, supply water, or heating water, indicating that Fe and Si species might have entered into the pipe from the exterior. These results indicated that pits were initiated due to ion concentration gradient near Fe and Si species. Moreover, the interior of pits had lower pH due to Cl- concentration and Cu2O reactions, which accelerated the pit's growth and led to formation of pinholes. Additionally, we confirmed that the type of pitting corrosion was a complex combination of types I and II based on the HCO3-/SO42- ratio, pH, temperature, and corrosion products.

Pit Corrosion of SS420 Stainless Steel by Grain Boundary Sensitization (스테인레스강 SS420의 입계예민화에 의한 피트 부식)

  • Choe, Byung Hak;Lee, Bum Gyu;Jang, Hyeon Su;Park, Chan Sung;Kim, Jin Pyo;Park, Nam Gyu;Kim, Cheong In;Kim, Bo Mi
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.431-437
    • /
    • 2017
  • This study investigated the surface pit corrosion of SS420J2 stainless steel accompanied by intergranular crack. To reveal the causes of surface pits and cracks, OM, SEM, and TEM analyses of the microstructures of the utilized SS420J2 were performed, as was simulated heat treatment. The intergranular cracks were found to have been induced by a grain boundary carbide of $(Cr,Fe)_{23}C_6$, which was identified by SEM/EDS and TEM diffraction analyses. The mechanism of grain boundary sensitization occurred at the position of the carbide, followed by its occurrence at the Cr depleted zone. The grain boundary carbide of $(Cr,Fe)_{23}C_6$ type precipitated during air cooling condition after a $1038^{\circ}C$ solid solution treatment. The carbide precipitate formation also accelerated at the band structure formed by cold working. Therefore, using manufacturing processes of cooling and cold working, it is difficult to protect SS420J2 stainless steel against surface pit corrosion. Several counter plans to fight pit corrosion by sensitization were suggested, involving alloying and manufacturing processes.

Polarization Behavior and Corrosion Inhibition of Copper in Acidic Chloride Solution Containing Benzotriazole

  • Sang Hee Suh;Youngjoon Suh
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.137-152
    • /
    • 2023
  • Polarization behavior and corrosion inhibition of copper in acidic chloride solutions containing benzotriazole were studied. Pourbaix diagrams constructed for copper in NaCl solutions with different BTAH concentrations were used to understand the polarization behavior. Open circuit potential (OCP) depended not only on chloride concentration, but also on whether a CuBTA layer was formed on the copper surface. Only when the (pH, OCP) was located well in the CuBTA region of the Pourbaix diagram, a stable corrosion inhibiting CuBTA layer was formed, which was confirmed by X-ray Photoelectron Spectroscopy (XPS) and a long-term corrosion test. The OCP for the CuBTA layer decreased logarithmically with increasing [Cl-] activity in the solution. A minimum BTAH concentration required to form a CuBTA layer for a given NaCl concentration and pH were determined from the Pourbaix diagram. It was found that 320 ppm BTAH solution could be used to form a corrosion-inhibiting CuBTA layer inside the corrosion pit in the sprinkler copper tube, successfully reducing water leakage rate of copper tubes. These experimental results could be used to estimate water chemistry inside a corrosion pit.