• Title/Summary/Keyword: Corrosion Management

Search Result 226, Processing Time 0.027 seconds

Reliability Analysis for Stress Corrosion Cracking of Suspension Bridge Wires (현수교케이블의 응력부식에 관한 신뢰성해석)

  • Taejun;Andrzej S. Nowak
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.537-544
    • /
    • 2003
  • This paper deals with stress corrosion cracking behavior of high strength steel exposed to marine environments. The objective is to determine the time to failure as a function of hydrogen concentration and tensile stress in the wires. A crack growth curve is modeled using finite element method (FEM) program. The coupled hydrogen diffusion-stress analyses of SCC were programmed separately. The first part is calculating stress and stress intensity /sup 1)/factor of a cylindrical shell, prestressing tendon or suspension bridge wires, from the initiation of cracks to rupture. Virtual crack extension method, contour integral method, and crack tip elements are used for the calculation of stresses in front of the crack tip. Comparisons of the result show a good agreement with the analytical equations and wire tests. The second part of the study deals with the programming of hydrogen diffusion, affected by hydrostatic stress, calculated at the location of boundary of plastic area around the crack tip. The results of paper can be used in the design and management of prestressed structures, cable stayed and suspension bridges. Time dependent correlated parallel reliabilities of a cable, composed of 36 wires, were evaluated by the consideration of the deterioration of stress corrosion cracking.

  • PDF

Evaluation of Deterioration on Steel Bridges Based on Bridge Condition Ratings

  • Park, Chan-Hee
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.166-171
    • /
    • 2004
  • Recent developments in Bridge Management Systems (BMS) and in Life-Cycle Cost (LCC) of bridges, have raised the need for evaluation procedure of future condition (Deterioration) of a bridge. Predicting future deterioration is not an easy task due to limited past data to extrapolate from and also due to difficulty in measuring actual deterioration such as section loss of steel on an actual steel bridge. Also, increase in live load and reduction of resistance are random variables, thus a probabilistic approach should be adopted for determining the future deterioration. Due to difficulties in evaluation of future deterioration on steel bridges, accepting uncertainties within a reasonable error, a deterministic procedure using bridge condition rating can be a useful tool for projection of future condition of bridges to identify repair and maintenance needs. The object of this paper is to determine applicability of evaluating deterioration of steel bridge components based on Bridge condition ratings. Bridge condition ratings of bridge components show wide variation for bridges of same age and does not directly correlate well with the age of the bridge and/or deterioration of the bridge. High uncertainty can be reduced by breaking down the rating and by sensitivity analysis. From refined condition rating data, generalized deterioration profile of structures based on age can be derived. Examples are shown for sample bridges in USA. Approximately, 3,000 short to medium span steel bridges were listed in the inventory database. Results show wide variation of rating factors but by subdividing the Bridge condition ratings for various categories general deterioration profiles of steel bridges can be determined.

A Study on the Thermal Hydraulic Analysis and B-Scan Inspection for LDIE Degradation of Carbon Steel Piping in a Nuclear Plant (원전 탄소강 배관의 액적충돌침식 손상에 대한 B-Scan 검사 및 수치해석적 분석)

  • Hwang, Kyeong Mo;Lee, Dae Young
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.218-224
    • /
    • 2012
  • Liquid droplet impingement erosion (LDIE) known to be generated in aircraft and turbine blades is recently appeared in nuclear piping. UT thickness measurements with both A-scan and B-scan UT inspection equipments were performed for a component estimated as susceptible to LDIE in feedwater heater vent system. The thickness data measured with B-Scan equipment were compared with those of A-Scan. Thermal hydraulic analysis based on ANSYS FLUENT code was performed to analyze the behavior of liquid droplets inside piping. The wall thinning rate and residual lifetime based on both existing Sanchez-Caldera equation and measuring data were also calculated to identify the applicability of the existing equation to the LDIE management of nuclear piping. Because Sanchez-Caldera equation do not consider the feature of magnetite formed inside piping, droplet size, colliding frequency, the development of new evaluation method urgently needs to manage the pipe wall thinning caused by LDIE.

Characteristics and Corrosion Behaviors of Quaternary (Co/Ni/P/Mn) Electroless Plating (4성분 무전해도금(Co/Ni/P/Mn)의 특성 및 부식거동)

  • Hur, Ho
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.136-140
    • /
    • 2014
  • The quaternary alloy (Co/Ni/P/Mn) coatings were prepared using electroless plating on the polypropylene. Compositions of the quaternary alloys (Co/Ni/P/Mn) were controlled by the amount of agents. The composition by EDS, morphology with SEM, film thickness, and surface electrical resistance of the samples were measured. Higher phosphorous content samples give larger electric resistance, thus a relationship is admitted between P content and electric resistance. The corrosivity of the coatings were evaluated by electrochemical methods in the 3.5 wt% NaCl and 5.0 wt% $H_2SO_4$ solutions, respectively. It was concluded that phosphorous addition enhances resistivity in the corrosion.

Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration

  • Papadakis, Vagelis G.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.201-213
    • /
    • 2013
  • While recognizing the problem of reinforcement corrosion and premature structural deterioration of reinforced concrete (RC) structures as a combined effect of mechanical and environmental actions (carbonation, ingress of chlorides), emphasis is given on the effect of the latter, as most severe and unpredictable action. In this study, a simulation tool, based on proven predictive models utilizing principles of chemical and material engineering, for the estimation of concrete service life is applied on an existing reinforced concrete bridge (${\O}$resund Link) located in a chloride environment. After a brief introduction to the structure of the models used, emphasis is given on the physicochemical processes in concrete leading to chloride induced corrosion of the embedded reinforcement. By taking under consideration the concrete, structural and environmental properties of the bridge investigated, an accurate prediction of its service life is taking place. It was observed that the proposed, and already used, relationship of service lifetime- cover is almost identical with a mean line between the lines derived from the minimum and maximum critical values considered for corrosion initiation. Thus, an excellent agreement with the project specifications is observed despite the different ways used to approach the problem. Furthermore, different scenarios of concrete cover failure, in the case when a coating is utilized, and extreme deicing salts attack are also investigated.

Corrosion Rate of Structural Pipes for Greenhouse (온실 구조용 파이프의 부식속도 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2015
  • Because soils in reclaimed lands nearby coastal areas have much higher salinity and moisture content than soils in inland area, parts of greenhouses embedded in such soils are exposed to highly corrosive environments. Owing to the accelerated corrosion of galvanized steel pipes for substrucrture and structure of greenhouses in saline environments, repair and reinforcement technologies and efficient maintenance and management for the construction materials in such facilities are required. In this study, we measured the corrosion rates of the parts used for greenhouse construction that are exposed to the saline environment to obtain a basic database for the establishment of maintenance and reinforcement standards for greenhouse construction in reclaimed lands with soils with high salinity. All the test pipes were exposed to soil and water environments with 0, 0.1, 0.3, and 0.5% salinity during the observation period of 480 days. At the end of the observation period, salinity-dependent differences of corrosion rate between black-surface corrosion and relatively regular corrosion were clearly manifested in a visual assessment. For the soils in rice paddies, the corrosion growth rate increased with salinity (0.008, 0.027, 0.036, and $0.043mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively). The results for the soils in agricultural fields are 0.0002, 0.039, 0.040, and $0.039mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively. The higher corrosion rate of rice-paddy soil was associated with the relatively high proportion of fine particles in it, reflecting the general tendency of soils with evenly distributed fine particles. Hence, it was concluded that thorough measures should be taken to counteract pipe corrosion, given that besides high salinity, the soils in reclaimed lands are expected to have a higher proportion of fine particles than those in inland rice paddies and agricultural fields.

Control system modeling of stock management for civil infrastructure

  • Abe, Masato
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.609-625
    • /
    • 2015
  • Management of infrastructure stock is essential in sustainability of society, and its analysis and optimization are studied in the light of control system modeling in this paper. At the first part of the paper, cost of stock management is analyzed based on macroscopic statistics on infrastructure stock and economical growth. Stock management burden relative to economy is observed to become larger at low economic growth periods in developed economies. Then, control system modeling of stock management is introduced and by augmenting maintenance actions as control input, dynamic behavior of stock is simulated and compared with existing time history statistics. Assuming steady state conditions, applicability of the model to cross sectional data is also demonstrated. The proposed model is enhanced so that both preventive and corrective maintenance can be included as system inputs, i.e., feedforward and feedback control inputs. Optimal management strategy to achieve specified deteriorated stock level with minimal cost, expressed in terms of preventive and corrective maintenance actions, is derived based on estimated parameter values for corrosion of steel bridges. Relative cost effectiveness of preventive maintenance is shown when target deteriorated stock level is lower.

Effects of ion irradiation on microstructure and properties of zirconium alloys-A review

  • Yan, Chunguang;Wang, Rongshan;Wang, Yanli;Wang, Xitao;Bai, Guanghai
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.323-331
    • /
    • 2015
  • Zirconium alloys are widely used in nuclear reactors as structural materials. During the operation, they are exposed to fast neutrons. Ion irradiation is used to simulate the damage introduced by neutron irradiation. In this article, we briefly review the neutron irradiation damage of zirconium alloys, then summarize the effect of ion irradiation on microstructural evolution, mechanical and corrosion properties, and their relationships. The microstructure components consist of dislocation loops, second phase precipitates, and gas bubbles. The microstructure parameters are also included such as domain size and microstrain determined by X-ray diffraction and the S-parameter determined by positron annihilation. Understanding the relationships of microstructure and properties is necessary for developing new advanced materials with higher irradiation tolerance.

Concentration of elemental ions released from non-precious dental casting alloys (치과주조용 비귀금속 합금의 금속 용출 수준)

  • Sakong, Joon;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Purpose: This study was to assess the extents of the release of metals from the non-precious alloys used for dental casting by measuring the differences in the extents of the release of metals by types of alloys, pH level and elapsed time. Methods: Uniform-sized specimens(10 each) were prepared according to the Medical Device Standard of the Korea Food and Drug Administration(2010) and International Standard Organization(ISO22674, 2006), using four types of alloys(one type of Ni-Cr and one type of Co-Cr used for fixed prosthesis, and one type of Ni-Cr and one type of Co-Cr used for removable prosthesis). A total of 12 metal-release tests were performed at one-day, three-day, and two-week intervals, for up to 20 weeks. The metal ions were quantified using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: The results showed that the extent of corrosion was higher in the ascending order of Jdium-$100^{(R)}$, Bellabond-$Plus^{(R)}$, Starloy-$C^{(R)}$, and Biosil-$F^{(R)}$. The lower the pH and the longer the elapsed time were, the greater the increase in metal corrosion. At pH 2.4, the release of Ni from Jdium-$100^{(R)}$, a Ni-Cr alloy, was up to 15 times greater than the release of Co from the Co-Cr alloy from two weeks over time, indicating that the Ni-Cr alloy is more susceptible to corrosion than the Co-Cr alloy. Conclusion: It is recommended that Co-Cr alloy, which is highly resistant to corrosion, be used for making dental prosthesis with a non-precious alloy for dental casting, and that non-precious alloy prosthesis be designed in such a way as to minimize the area of its oral exposure. For patients with non-precious alloy prostheses, a test of the presence or absence of periodontal tissue inflammation or allergic reaction around the prosthesis should be performed via regular examination, and education on the good management of the prosthesis is needed.

The Stress Corrosion Cracking Resistance of Heat Treated STS304 Stainless Steel Welded Metal (304 스테인리스강 용접금속의 열처리에 따른 응력부식균열)

  • Cho, D.H.;Kim, H.R.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.34-44
    • /
    • 1996
  • Austenite stainless steel was produced by arc welding with current 650A, voltage 50V and welding speed 10cm/min. It was post-welded and then heat treated at $1,050^{\circ}C$ for 120min. And then it was immersed in water or in air. The microstructural changes, ferrite contents, mechanical properties, and stress corrosion cracking(SCC) were investigated. The SCC was studied in 42wt% boiling $MgCl_2$($140^{\circ}C$) under the constant stress using SCC elongation curve. The results showed that; 1. The as-welded spedimen seemed to increase ${\delta}$-ferrite content largely, and revealed continuous network of lathy and vermicular type. The post-welded heat treatment changed the morphologies of ferrite from continuous type to island type. 2. The as-welded, air and water quenched specimens had the ${\delta}$-ferrite content 9.7%, 3.2% and 2.1% respectively. We also showed that ${\delta}$-ferrite was Cr-rich and Ni-poor by EPMA. 3. The time of failure on the SCC was measured and it was used for corrosion elongation curve. The condition of SCC was investigated under $35kgf/mm^2$ load and the results were as follows; 4. The intergranullar cracking by stress corrosion was most distinct in weld metal while the transgranular cracking occurred in the air cooled specimen.

  • PDF