• Title/Summary/Keyword: Corrosion Level

Search Result 350, Processing Time 0.035 seconds

Application of Generic Algorithm to Inspection Planning of Fatigue Deteriorating Structure

  • Kim, Sung-chan;Fujimoto, Yukio;Hamada, Kunihiro
    • Journal of Ship and Ocean Technology
    • /
    • v.2 no.1
    • /
    • pp.42-57
    • /
    • 1998
  • Genetic Algorithm (GA) is applied to obtain optimal Inspection plan for fatigue deteriorating structures. The optimization problem is defined so as to minimize inspection cost in the 1ifs-time of the structure under the constraint that the increment of failure probability in each inspection interval is maintained below a target value. Optimization parameters are the inspection timing and the inspection quality. The inspection timing is selected from the discrete intervals such as one year, two years, three years, etc. The inspection quality is selected from the followings; no inspection, normal inspection, sampling inspection or precise inspection. The applicability of the proposed GA approach is demonstrated through the numerical calculations assuming a structure consisting of four member sets. Influences of the level of target failure probability, initial defect condition and stress increase due to plate thickness reduction caused by corrosion on inspection planning are discussed.

  • PDF

Fuzzy inference based cover thickness estimation of reinforced concrete structure quantitatively considering salty environment impact

  • Do, Jeong-Yun
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.145-161
    • /
    • 2006
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and watercement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.

Experimental Study on the Effect of Specimen Size on Electrical Resistivity Measurement (전기비저항 측정에서 실험체 크기의 영향에 대한 실험적 연구)

  • Lim, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.164-169
    • /
    • 2018
  • In this study, the effect of the size of the specimen on the apparent resistivity was investigated at the laboratory level for electrical resistivity. The specimens were measured for apparent resistivity by fabricating specimens with different sides and heights. Experimental results show that the apparent resistivity increases as the side and height of the specimen become smaller. Also, it was confirmed that the influence of the size of the specimen on the electrical resistivity measurement was not linear.

Mechanical and wear properties of HPT-biomedical titanium: A review

  • Mohammed, Mohsin Talib
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.185-196
    • /
    • 2015
  • Titanium (Ti) based alloys are widely used in biomedical implants due to their low density, excellent corrosion resistance and good biocompatibilities. In recent years, growing interest in sever plastic deformation (SPD) has stimulated research and development on the techniques to attain refining of the grain size to the submicrometer or even nanometer level. The mechanical and wear properties determining the application of Ti in medicine may be improved via SPD. High pressure torsion (HPT) technique is one of the approaches available for improving the mechanical and wear properties of biomedical Ti materials. Accordingly, this article is designed to examine most recent state of the art scientific works related to the developments in mechanical properties and wear resistance of biomedical Ti materials processed by HPT. A comprehensive review in this area is systematically presented.

Shielding analyses supporting the Lithium loop design and safety assessments in IFMIF-DONES

  • Gediminas Stankunas ;Yuefeng Qiu ;Francesco Saverio Nitti ;Juan Carlos Marugan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1210-1217
    • /
    • 2023
  • The assessment of radiation fields in the lithium loop pipes and dump tank during the operation were performed for International Fusion Materials Irradiation Facility - DEMO-Oriented NEutron Source (IFMIF-DONES) in order to obtain the radiation dose-rate maps in the component surroundings. Variance reduction techniques such as weight window mesh (produced with the ADVANTG code) were applied to bring the statistical uncertainty down to a reasonable level. The biological dose was given in the study, and potential shielding optimization is suggested and more thoroughly evaluated. The MCNP Monte Carlo was used to simulate a gamma particle transport for radiation shielding purposes for the current Li Systems' design. In addition, the shielding efficiency was identified for the Impurity Control System components and the dump tank. The analysis reported in this paper takes into account the radiation decay source from and activated corrosion products (ACPs), which is created by d-Li interaction. As a consequence, the radiation (resulting from ACPs and Be-7) shielding calculations have been carried out for safety considerations.

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.

Prediction of Time to Corrosion for Concrete Bridge Decks Exposed to De-Icing Chemicals (제빙화학제 살포로 인한 콘크리트 교량 바닥판의 철근부식 시작시기의 예측)

  • Lee, Chang-Soo;Yoon, In-Seok;Park, Jong-Hyok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.606-614
    • /
    • 2003
  • The major cause of deterioration for the concrete bridge decks exposed to de-icing chemicals would be chloride-induced reinforcement corrosion. Thus, in this paper, in order to predict time to corrosion for concrete bridge decks in the urban area, chloride concentration was measured with depth from the surface. A frequency analysis on surface chloride concentration and chloride diffusion coefficient of concrete bridge deck equals 0.192, 29.828 in the scale parameter and 7.899, 1.983 in the shape parameter of gamma distribution. The average value of surface chloride concentration equals 1.5 kg/㎥ and condenses from 1 to 2 kg/㎥ in the level of probability 70%. From the probabilistic results, it is confirmed that 26mm of minimum cover depth in order to target 20 years over is calculated. The countermeasure strategy to extend the service life of concrete bridge deck exposed to de-icing chemicals would be an effective method to increase cover depth and to place high performance concrete, which could lead to reduce the chloride diffusion coefficient and distribution range.

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

A STUDY ON METAL RELEASE OF TIN ION-PLATED STAINLESS STEEL ORTHODONTIC APPLIANCES (TiN 피막 처리된 스테인레스강 교정용 장치물의 금속 유리에 대한 연구)

  • KIM, Myung-Sook;Sung, Jae-Hyun;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.25 no.1 s.48
    • /
    • pp.43-54
    • /
    • 1995
  • This study was conducted to examine the metal release of TiN-plated stainless steel orthodontic appliances by constructing the simulated orthodontic appliances equivalent to maxillary half arch, by dividing into TiN-plated and TiN-nonplated Bloops and by dividing again these groups into welded and nonwelded groups. And then, the total quantity of metal release was obtained by measuring the amounts of both soluble and precipitated nickel and chromium after immersing in artificial saliva for 15 days. And then, the corrosion appearance of surface structure was observed by using SEM. The results of this study were summarized as follows. 1. The total amounts of released nickel and chromium showed that the TiN-plated group after welding(Group 1) was 25.46 ${\mu}g$, respectively, and 17.4 ${\mu}g$, while the TiN-nonplated group after welding(Group III) was 54.69 ${\mu}g$, respectively, and 85.27 ${\mu}g$. Then, the TiN-Plated group indicated less amounts of metal release(p<0.05). 2. The total amounts of the TiN-plated group without welding(Group II) was 0.05${\mu}g$ and 0.34${\mu}g$, respectively. Then, it was shown that the TiN-plated group without welding(Group II) indicated less metal release than that of the TiN-Plated group after welding(Group I)(p<0.01, p<0.05). 3. When observing their surface structure, there were a lot of precipitate and pitting corrosion in the groups with welding(Group I & III), when the TiN-plated group(Group I) showed lower level than the TiN-nonplated group(Group IIII). On the other hand, the groups without welding(Group II & IV) indicated a little of pitting corrosion. 4. In case of observation with the naked eyes, it was shown that there were significant disco1oration and corrosion in the groups with welding(Group I & III), while there was no any remarkable change in the groups without welding(Group II & IV).

  • PDF