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Abstract
Genetic Algorithm (GA) is applied to obtain optimal inspection plan for fatigue deteriorat-
ing structures. The optimization problem is defined so as to minimize inspection cost in the
life-time of the structure under the constraint that the increment of failure probability in each
inspection interval is maintained below a target value. Optimization parameters are the in-
spection timing and the inspection quality. The inspection timing is selected from the discrete
intervals such as one year, two years, three years, etc. The inspection quality is selected from
the followings; no inspection, normal inspection, sampling inspection or precise inspection.
The applicability of the proposed GA approach is demonstrated through the numerical calcu-
lations assuming a structure consisting of four member sets. Influences of the level of target
failure probability, initial defect condition and stress increase due to plate thickness reduction
caused by corrosion on inspection planning are discussed.
Keywords : Inspection plan, Markov chain model(MCM), Genetic algorithm(GA), Fa-
tigue reliability

1. Introduction

Fatigue is one of the most frequent damage in the use of structures. However, because of the
complicated fatigue mechanism and the wide scattering property of fatigue life, accurate life es-
timation is usually difficult for real structures. Reasonable in-service inspections and succeeding
maintenance are thought to be necessary for the safe operation of structures.

So far, several methods of inspection planning have been proposed. These are inspection plan-
ning controlling the failure probability below certain level[ Yang, J.N.,1974][Itagaki, H., 1982][De-
odatis, G., 1992] inspection planning aiming at life time cost minimization[Fujita, M.,1989][Fuji-
moto, Y., 1991], cost optimal inspection planning with constraint of failure probability, etc.[Fuji-
moto, Y., 1993]

Basically, optimization of inspection planning is a dynamic programming problem, where pre-
vious inspections influence inspection schedule in the future. Also, inspection plan during service
life is so versatile that an optimal plan can not be obtained easily by direct observation. Therefore,
most of the optimization methods developed in the previous studies had used sub-optimization
technique where inspection options and/or period of inspection schedule were restricted consider-
ably.
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In this study, Genetic Algorithm (GA)|Goldberg, D.E., 1995][Sakawa, M., 1995] is applied to
the inspection planning of fatigue deteriorating structures. GA is a search algorithm based on the
mechanics of natural selection and natural genetics. Because of the simplicity of this algorithm,
GA has a very wide applicability. Also, GA has especially strong merits for inspection planning
problem where fatigue deterioration process is complex and mathematical treatments are implicit.

2. Optimization of Inspection Planning

The optimization problem is formulated such that “Find an inspection plan which minimizes in-
spection cost in the life time of structure under the following constraint; an increment of failure
probability during every inspection interval must be maintained below a target value”. The objec-
tive function and the constraint are expressed by the following equations[Fujimoto, Y., 1993][Fu-
jimoto, Y., 1997].

I

Objective function: Minimize = CT = Cygr(i) + Cow (i) (1
i=1
Constraint: AP (i) < AP pqarger for every i-th inspection 2)

where CT is the cost in the.life time. Cjss(:) and Cgg(i) are the inspection cost and the
scheduled system down cost at the 7 — th inspection, respectively. I is the number of inspections
in the service life. AP;(i) is the increment of failure probability between (i — 1) — th and i — th
inspection. APy g, g 18 the target value of APy

In the above optimization, repair cost is not considered for the sake of simplicity. Also, failure
risk is not included in the cost items. However, the effect of failure risk is considered in the
constraint. The optimization parameters are inspection timing and the inspection quality.

3. Fatigue Reliability Analysis Using MCM

Fatigue reliability analysis was carried out employing Markov Chain Model(MCM){Bogdanoft,
J.L., 1985][Fujimoto, Y., 1997][Fujimoto, Y.,1997]. The MCM can describe the entire probabtlis-
tic feature of fatigue process in the state vector and the transition matrix. The transition matrix P
and state vector A(t) are expressed as follows.

Api(t) = A(0) xP™ (3)
A(()) = {(1.1(0),(1,2(0),... ,(I,[,(O),(J,[H.](O),...,(I,h__l(()),()} (4)
ABI(t) = {(1,1(t>,(1,2(t),... 7(Lb(t)7(1‘b+l(t)a--' a"’h~l(t)7(1fh,(t)} (5)

where A gr(t) means the state vector before inspection at time + and A(0) is initial state vector
describing initial damage condition. n; means the number of transition to time t. b is the crack
initiation state and A is the failure state after crack propagation. Crack condition is calculated in
every unit discrete time interval which is called as duty cycle. Duty cycle of ten days is used in

43



Sungchan Kim, et al; Application of Generic Algorithm ...

this paper.
[ @ )
P2 q2 crack initiation
Po—1 gb—1
P= Py Q@ (6)
Pb+1 db+1
crack propagation Ph—1 Gh—1
1

The transition probability from j — th state to (j + 1) — th state is approximated by geometric
distribution. The crack growth curve of a member is divided into uniform interval with crack

length, and the crack states were determined '9)12). The transition probability g;’s are calculated
by,
1 1 1 1
a1 = Tlaq2_T2a '--aq]_Tja "'aqh—l—q—,h_1
p; = 1-—g (7

where T is a time interval from crack state j to crack state (j + 1). The matrix size is determined
as b =5 and & = 17 in this study.

Inspections and repair processes are also incorporated into the model. For perfect repair model,
the state vector after repair, A 4;(¢), can be expressed as

Aa®) = {a\(t),ax(t), ..., a(t), ap41 (1), -, a1 (t), ah (1)} ®)
a;y(t) = (1—-POD;) xa;(t) )

where ’OD); is the detection probability of crack with crack state j.

The cumulative failure probability, and detected and residual crack length distributions at re-
spective inspection time can be calculated from resulting state vector. Failure probability (Py) at
time t is given by a;,(t), and the increment of failure probability AP is calculated by

APy = ap(t + 1) — ap(t) (10)

where ay, (1) is the last term of Agy(t).

4. Inspection Method

Fig.1 shows the inspection capability (POD curves) for normal inspection and precise inspection,
which was obtained from the questionnaire asked to naval engineers[Fujimoto, Y.,1996]. In normal
inspection, cracks are observed from the distance about 2 to Sm. In precise inspection, cracks
are observed from the distance about 0.5m. These POD curves are expressed by the following

equations.

exp{—5.176 + 0.864 In(2a — 100)}
Normal:(POD); = 1
ormal:(POD) = 1= ST75.176 + 0.8641n(Za — 100)) an
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Figure 1. POD curves for normal and precise inspection

, exp{—7.041 + 1.45In(2a — 30)}
{(POD), = 12
Precise:(POD): = 17 o T=7.041 1 1.45 In(2a — 30)] (12)

where 2a is crack length.

On the other hand, in the sampling inspection, precise inspections are performed to limited
number of sample members. If at least one crack is detected among samples, precise inspections
are performed to all the rest members. Otherwise, the inspection is not performed any more. POD
for sampling inspection is calculated by

(POD)gampt =75 X (POD)a + (1 —rs) x [1 = (1 = Pp)™*"M] x (POD)3 (13)

where 7 is sampling rate and n s is the number of members in the member set. Pp is the detection
ratio of a crack by the precise inspection. Pp is calculated by the following equation.

Pp = [(POD); x ga(a)da (14

0o

The distribution of crack length, g,(a), at each inspection time can be obtained from the state
vector of MCM.

Selected inspection method influences both of the crack detection probability and the inspec-
tion cost.

5. Application of Genetic Algorithm

The optimization procedure of inspection plan is shown in Fig.2. GA is applied to generate ran-
dom inspection plans and to select optimal plan among the generated ones. MCM is applied to
calculate the structural reliability for the given inspection plans. In order to generate next su-
perior generation which have better fitness, reproduction, crossover and mutation are applied to
populations. Special elite selection is applied at reproduction stage.
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Figure 2. Optimization procedure of inspection plan by GA
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Table 1. Gene corresponding to inspection timing and quality

-Example of gene for a member set

Inspection year 1 213145116117 ]18]19]20
Gene 00 11 (01|10 10(---{11]10[00]| 11|00
- Example of gene for a structure
Member set A B C D
Gene 001101--- | 0100010--- | 000O1%--- 001101- - -
5.1. Gene

The genes in GA correspond to inspection plan and its format is expressed as binary alphabet 70"
and ”1”. In this paper, gene of two bits length is prepared to describe the inspection quality. The
bits 00 means no inspection, "01” means normal inspection, ”10” means sampling inspection
and 117 means precise inspection, respectively. An example of generated string during 20 years
service is shown in Table 1. In this example, inspection interval is initially assumed as one year.
The total length of the gene during usage is 40 bits. This string means that no inspection is carried
out at the first inspection, precise inspection at the second inspection and normal inspection at the
third inspection, etc. In the above, inspection interval is not uniform, because the bits ”00” means
no inspection. Namely, both inspection quality and interval are optimized by the use of the above
gene.

For the analysis of a structure consisting of several member sets, the gene of inspection plan
can be described as series form. Table 1 shows an example of the gene for a structure consisting
of four member sets, A,B,C and D. The total length of the gene is 160 bits. The number of
possible inspection plans reaches 420 (about 10'?) even in the problem of one member set. So, it
is impossible to check the qualities of all the inspection plans by Monte Carlo method.

5.2. Fitness Function

The reproduction in this paper is conducted by the probability proportional to the ratio of fitness
and the sum. In this paper, fitness function is formulated on the basis of life time cost with
constraint of failure probability. The life time cost consists of pure inspection cost and scheduled
system down cost as shown in Eq.(1).

The fitness function of an inspection plan is the reciprocal form of total inspection cost and it
is expressed by the following equation for a member set.

1
1 .
> i=1 Crsrm(d)
In the above, f,, ; means the fitness of n — th sample (n — th inspection plan) for member set m
. Np 1s the population size (total number of inspection plans) and [ is the number of inspections
in the entire service life.

The fitness function of a structure is defined as follows, in which scheduled system down cost
Csw s is considered in the life time cost.

1
I S (S, Crarm@) & Coms )]

fvn,n: ,('ﬂ: 1,2,37"'7Np) (]5)

(n=1,2,3,---,Np) (16)
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where f, means the fitness of n —th sample (n — th inspection plan). M is the number of member
sets included in the structure. The fitness function takes large value for an inspection plan with
small cost, and takes small value for a plan with large cost.

From the constraint of Eq.(2), increment of failure probability APy must be maintained below
a target value A Py 74rq¢ at every inspection interval. If the constraint is violated at any inspection
interval, € is given as the fitness function instead of the cost based fitness function of Eq.(15) or
(16). That is,

fn =€ |if APf(’L) > APf,Target~ a7

¢ is a very small value and ¢ = 107% is used in this study. This procedure means that if the
inspection plan violates the constraint, a large penalty is added to the life time cost.

5.3. Reproduction, crossover and mutation

After calculating the fitness for every generated plans, next superior generation is generated by
genetic operators such as reproduction, crossover and mutation. Natural selection, in which popu-
lations with high fitness leave many descendants at next generation, is embodied by reproduction
or selection in GA. There are several ways to reproduce the populations for superior next genera-
tion. In this study, special elite selection is applied.

Special elite selection method is like a process of entrance examination in which a small num-
ber of excellent elite on special subject is matriculated. In the special elite selection, fitness func-
tions are calculated not only for structure but also for each member set.

At first, the fitness function, fm, », of a member set m is calculated for all the samples (n =
1,2,3,..,N,) from Eq.(15). And the samples with high fitness are sorted on descending order.
Then the best 7% of samples are selected. Selected samples are the elite inspection plans of a
member set m. These calculation and selection are also carried out for the rest member sets. After
the selections are completed, parts of string of every member set which have the same ranking
are connected each other, and r% of new populations are made. These genes have elite property
locally for every member set but they are not global elite for the entire structure.

Secondly, the fitness function, f,, of the entire structure is calculated for all the samples (n =
1,2,3,..., Np) from Eq.(16). And the samples with high fitness are sorted on descending order.
The remaining (100 — )% of new populations is selected from these samples. This reproduction
can leave a certain percentage of special elite genes and the rest percentage of global elite genes.

In order to generate new population from old parents, one point crossover, which exchange
parent’s gene at one position, is typically used. Crossover tends to generate children only resem-
bling parent. The generation of diverse populations can be accomplished by mutation.

6. Numerical Examples

6.1. Condition of Analysis

Table 2 shows the fatigue property and the cost content of four member sets. Numerical analysis is
carried out for this hypothetical structure consisting of four member sets. The crack initiation life
Ny is defined by a length of 20mm and the failure life is defined by a crack length of 500mm.
The crack growth curve is assumed to be linear for the sake of simplicity.
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Table 2. Fatigue properties and cost content of four member sets

Member NCI Ncp nmy I"S C1 C2 C3 C4
A 4 16 100 20% 1 5 15
B 8 16 100 20% 1 5 15
C 10 20 100 | 20% | 1 ) 5 10
D 10 30 100 20% i 2 5
Ny : Crack initiation life(year) Nep: Crack propagation life(year)
nmy : Number of members Is: Sampling rate(%)
C; : Normal inspection cost C, : Sampling inspection cost
Cj3 : Precise inspection cost C4 : Cost due to scheduled system down

=4

Member set A

Member set B

Member set C

0.02

Probability density of fatigue life

0 20 40 60 80
Service years

Figure 3. Probability density of fatigue life

Member ‘A’ has short fatigue life and member ‘D’ has long fatigue life. Each member set
consists of 100 members. C, Cy and Cj are the inspection cost for normal, sampling and precise
inspections, respectively. Cj is the scheduled system down cost and this value is defined for the
entire structure. The sampling rate 7, in the sampling inspection is assumed as 20%. Fig.3 shows
the probability density functions of failure life of each member. Service life of the member sets is
20 years.

6.2. Result of Analysis

At first, sensitivity analysis is performed to find the efficient condition of GA parameters. As a
result, the probability of crossover p. = 0.6 and the probability of mutation p,, = 0.01 shows
good convergence. So, these values are mainly used in this study.

Fig.4 shows an example of the optimization process of inspection planning by GA. The pop-
ulation size is IV, = 200. Special elite selection method shows better efficiency comparing with
the ordinary roulette selection methods with one or two points crossover. The reason is due to the
long string length of the gene. Fig.5 shows the influence of selection rate 7 in the special elite
selection method. Better convergence of total cost is obtained when r = 20%. So, the following
analysis is carried out under the condition of NV, = 200 and r = 20%.

49



Sungchan Kim, et al; Application of Generic Algorithm ...

200 L Roulette
(one point crossover)

00T Al N -,
Roulette T

(two point crossover)

e
100

Special elite selection
(one point crossover, r=10%)

Life time inspection cost, CT
g
I

0 A 3 J 1
) 20 40 60 80 100
Generation number

Figure 4. Optimization process of CT(Influence of selection method in GA)

200
Special elite selection
p. =0.01
m

N P = 0.6

G178 f ; N =200
Y \ -~
- ( ?
»
(o]
5]
< 150 F W
.2 -\
s NAr= 100 %
2 N
s N
g 125 |~ N \/\/\/.
% =40 %" N %o
= =20 %
()
5100 ~ r=30 % r=50%
l r: selection rate
75 ! L

) 10 20 30 4D 50
Generation number

Figure S. Optimization process of CT(Influence of selection rate)

50



Total inspection cost ,CT

Sungchan Kim, et al; Application of Generic Algorithm ...

600

S

o

o
T

n
Q
[=]

A Pf,Target = 0.0001

10 20 30

Generation number

40

Figure 6. Optimization process of CT for respective APf 747 get

50

6.2.1. Influence of target failure probability on inspection planning

Optimization of inspection planning is carried out by changing the target failure probability APy .
arget- F1g.6 shows the change of CT during optimization process. The lower the APy 14, yeq i,
the more the C'T" becomes.

Table 3 shows the optimized inspection plan under APy 74,9 = 0.01,0.001 and 0.0001,
respectively. It is seen that number of inspections is increased with the decrease of target failure

probability. It is apparent that the member set with short fatigue life needs more inspections.

Table 3. Initial defect condition for analyzed five case

Nct Nep Inspection timing and quality
A Prrargst | Memb [(years)l (years) (Pavyears | Cist cT
1 10vears 20
A 4 16 {00000 OONON NNNNN ONNOO] 4.78E-2 9
0.01 B 8 16 (00000 O000ON ONNNN ONNOO, 3.86E-2 7 110
C 10 20 ({00000 00000 O00SON ONOOO! 14112 4
D 10 30 (00000 00000 00000 00000 §.011.3 0
A 4 16 (00000 CNSNN SNNNN NNNNOl s896E-3 21
0.001 B 8 16 (00000 OOONN SNSNN NNNNOQ| 7.33%-3 19 183
C 10 20 [00000 OONOO ONNNS ONSOO| 522E-3 9
D 10 30 [00000 00000 NOOOO SOONO| 1.91E-3 4
A 4 16 [0000N NSSSS SSPNP PONSO g9.roE-4 84
00001 | B | 8 | 16 J00000 OSNSS SSSSP NPSSO| 74sm4 | 77 | 336
[ 10 20 [00000 OONNS SOSNS SNNSO| ¢.03E-4 17
D 10 30 00000 00000 ONSON SNONO| 3.71E.4 8

N:Normal inspection  S:Sampling inspection  P:Precise inspection  O: Nu inspection

Fig.7 shows the change of APy during each inspection interval for four member sets under the
condition that the AP p4rqer = 0.001. It is understood that APy is maintained below the target
level during the entire service life.
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Figure 7. Change of APy in each inspection interval

Fig.8 shows the cumulative probability of failure P; of four member sets under APf 1,y ger =
0.001. Py is expressed by

1
Py =" AP(3) (18)
=1
Fig.9 compares the Py of member set A under APj14rge¢ = 0.001 among the three analyti-
cal conditions; optimal plan obtained by GA, normal inspection with 1 year interval is applied
throughout the service life, and precise inspection with 1 year interval is applied throughout the
service life. Fig.10 shows the change of APy corresponding to the three analytical conditions.
From the figure, it is seen that normal inspection with 1 year interval is not sufficient to satisfy
the constraint. Precise inspection with 1 year interval is enough to satisfy the constraint. But the
lifetime cost of precise inspection with 1 year interval amounts to C'T" = 300. On the other hand
the cost for optimal inspection plan is only C'T" = 21,
Fig.11 shows the lifetime cost with respect to target failure probability. Total lifetime cost
is composed of pure inspection cost and scheduled system down cost. The total lifetime cost
increases fast with the decrease of target failure probability.

Table 4. Initial defect condition for analyzed five cases

Condition of] Length of initial crack_ (mm)
initial defect{ O | 50 | 80 (1101401170 200 250 { 300 | 350 { 400
Case 1 1.0

Case 2 0.910.1
Case 3 0.8 10.07{0.03
Case 4 0.9 10.0510.03]0.02
Case 5 3.8 10.0110.01]0.01(0.01{0.01[0.01{0.01]0.01]0.01/0.01
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Figure 8. Cumulative failure probability for Member sets

6.2.2. Influence of initial defect condition on inspection planning

In the above, first inspection timing is mainly selected at four to ten years’ after the start of service.
This is due to the reason that initial defect is not considered in the state vector of the Markov Chain
model. However, initial defects inevitably exist in the actual structures, especially in the welded
structures. So, the effect of initial defects on inspection planning is investigated.

Table 4 shows the five cases of initial defect conditions assumed in this study. In the figure,
Casel means the perfect member which has no defect, Case2 means that the member has initial
defect of 50mm length with a probability of 10%. The same initial defect condition is assumed
for all the member sets. The optimization is carried out under AP; = 0.001.

Table 5 shows the result of optimal inspection plan for the Case 1, Case 3 and Case 5. It is
seen that first inspection timing becomes early when the existence of initial defect increase. Fig.12
shows the inspection costs of each member set with the change of initial defect.

6.2.3. Influence of stress increase due to plate thickness reduction caused by corrosion

In the corrosion environment, fatigue strength is decreased by both of the plate thickness reduction
due to uniform corrosion and the pits due to local corrosion. In this study, the effect of thickness
reduction on inspection planning is discussed for a single member set. The reduction of plate
thickness accompanies the increase of stress. In this study, it is assumed that the stress increase is
linear and the rate of stress increase during 20 year’s service is to be 5%, 10% and 20%. Fatigue
life of the member is assumed to be shortened according to the S-N relationship S = CN 02,
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Figure 10. Change of failure probability under the predicted inspection plan
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The time dependent effect of stress increase can be modeled by adopting non-stationary Markov
Chain Model, in which the transition matrix is changed at every duty cycle[Fujimoto, 1989].

Table 6 shows the optimal inspection plan of member set A under the respective conditions
of stress increase. In this analysis APfpqrger is assumed as 0.001. It is seen that sampling and
precise inspections are applied often when the rate of stress increase becomes large. It is also seen
that the inspection cost C'jg; becomes larger according to the stress increase. Fig.13 shows the
change of cumulative probability of failure Py corresponding to the inspection plans. In the figure,
P;’s are gradually shifted to left side according to the stress increase. This means that failure
probability is increased by the plate thickness reduction and more inspections are necessary for
such condition.

Table 5. Optimal inspection plan for respective initial defect conditions

Initial Nei | Nep Inspection timing and
defect [ Memb |(years)|(years) quality (P20 years Ciss cr
eondition 1 10years 20
A 4 16 J00000 ONSNN SNNNN NNNNO| 896E.3 21
Casc 1 B 8 16 (00000 OOONN SNSHN NNNNO! 7.33E.3 19 183
[¢] 10 20 100000 OONOO ONNNS ONSOO| s5.228.] a
D 10 30 |00000 00000 NOOOO SOONO 4
A A 16 {00005 ONNSN NSNNN SNNND an
Case 3 B 8 16 {0000N NNNNN SNSNN NNNNO . 23 202
[ 10 20 {00000 OSNON ONNSN NOSOO| 4.871-3 12
D 10 30 {00000 00050 0SO00ON 05000 15683 7
2 | 4 | 16 NNSHN NNNSK SSONN NNNNO| 107m2 | o4
Case5 | B 8 16 (NNNNN NNONS OSOSN NNNNO| 96iR.3 28 267
C 10 20 [ONNNN SONNO SOOSN DSNOO 16
D 10 30 [0ONNO NNOON 0S000 05000 |9

N: Normal inspection  S: Sampling inspection  P: Precise inspection  O: No inspection

Table 6. Optimal inspection plan for different condition

Member | Stress Inspection timing and quality Cist
increase |1 10vears 0
0% 00000 ONSNN SNNNN NNNNO 21
5% (00000 ONSSS ONSNS PONOO 44
A 10% 100000 SOSNS SNSSP NONOO 49
15% 00000 OSSSN SPNPN ONNOO
[ 20% 000O0ON 0SSSS SPNPO NNODOO

N:  Normal inspection 5: Sampling inspection

0

B

@ {en
=]

P:  Precise inspection O:  No inspection
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Figure 13. Cumulative failure probability for different corrosion conditions

7. Conclusions

In this paper, Genetic Algorithm(GA) is applied to optimize the inspection planning of fatigue
deteriorating structure. The optimization problem is formulated to minimize inspection cost in the
life time of structure under the constraint that the increment of failure probability in each inspec-
tion interval is maintained below a target value. The optimization parameters are the inspection
timing and the inspection quality. Inspection timing is selected from the discrete interval such as
one year, two years, three years, etc. Inspection quality is selected from normal, sampling and pre-
cise inspection. Markov Chain Model is employed to calculate the failure probability of members
as well as the inspection effect. Influences of the level of target failure probability, initial defect
condition and stress increase due to plate thickness reduction caused by corrosion are investigated
through the numerical analysis assuming a hypothetical structure. The results throughout this
paper are summarized as follows.

1) Genetic algorithm is a very useful tool at the inspection planning of fatigue deteriorating
structures, where fatigue process is complex and mathematical treatments are implicit.

2) Special elite selection method is quite effective at the reproduction of inspection planning

. of a structure in which the string of gene is very lengthy.

3) Level of target failure probability influences much on inspection timing and inspection
quality. Life time inspection cost increases fast with the decrease of target failure proba-
bility.

4) Timing of first inspection becomes early when large initial defect exists in the structure.

5) Inspection planning considering the stress increase due to plate thickness reduction caused
by corrosion can be accomplished by applying a non-stationary Markov Chain Model.
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