• 제목/요약/키워드: Correlation of data

검색결과 19,815건 처리시간 0.044초

Spatial Correlations of Brain fMRI data

  • Choi Kyungmee
    • Communications for Statistical Applications and Methods
    • /
    • 제12권1호
    • /
    • pp.241-252
    • /
    • 2005
  • In this study we suggest that the spatial correlation structure of the brain fMRI data be used to characterize the functional connectivity of the brain. For some concussion and recovery data, we examine how the correlation structure changes from one step to another in the data analyses, which will allow us to see the effect of each analysis to the spatial correlation or the functional connectivity of the brain. This will lead us to spot the processes which cause significant changes in the spatial correlation structure of the brain. We discuss whether or not we can decompose correlation matrices in terms of its causes of variations in the data.

Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

  • Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권9호
    • /
    • pp.1345-1350
    • /
    • 2003
  • Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

On the Effect of Significance of Correlation Coefficient for Recommender System

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1129-1139
    • /
    • 2006
  • Pearson's correlation coefficient and vector similarity are generally applied to The users' similarity weight of user based recommender system. This study is needed to find that the correlation coefficient of similarity weight is effected by the number of pair response and significance probability. From the classified correlation coefficient by the significance probability test on the correlation coefficient and pair of response, the change of MAE is studied by comparing the predicted precision of the two. The results are experimentally related with the change of MAE from the significant correlation coefficient and the number of pair response.

  • PDF

Estimation of high-dimensional sparse cross correlation matrix

  • Yin, Cao;Kwangok, Seo;Soohyun, Ahn;Johan, Lim
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.655-664
    • /
    • 2022
  • On the motivation by an integrative study of multi-omics data, we are interested in estimating the structure of the sparse cross correlation matrix of two high-dimensional random vectors. We rewrite the problem as a multiple testing problem and propose a new method to estimate the sparse structure of the cross correlation matrix. To do so, we test the correlation coefficients simultaneously and threshold the correlation coefficients by controlling FRD at a predetermined level α. Further, we apply the proposed method and an alternative adaptive thresholding procedure by Cai and Liu (2016) to the integrative analysis of the protein expression data (X) and the mRNA expression data (Y) in TCGA breast cancer cohort. By varying the FDR level α, we show that the new procedure is consistently more efficient in estimating the sparse structure of cross correlation matrix than the alternative one.

적응적 상관도를 이용한 주성분 변수 선정에 관한 연구 (A Study on Selecting Principle Component Variables Using Adaptive Correlation)

  • 고명숙
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권3호
    • /
    • pp.79-84
    • /
    • 2021
  • 고차원의 데이터를 처리하기 위해서는 데이터의 성질을 유지하면서 특징을 잘 반영할 수 있는 특징 추출 방법이 필요하다. 주성분분석 방법은 고차원 데이터에 포함된 정보를 저차원의 데이터로 변환하여 원래 데이터의 변수 수보다 적은 수의 변수로 고차원 데이터를 표현 할 수 있는 방법으로서 데이터의 특징 추출을 위한 대표적인 방법이다. 본 연구에서는 데이터가 고차원인 경우 데이터 특징 추출을 위한 주성분 분석에 있어서 주성분 변수 선정 시 적응적 상관도를 기반으로 한 주성분 분석 방법을 제안한다. 제안하는 방법은 입력 데이터간의 상관 관계를 기반으로 상관도를 적응적으로 반영하여 데이터의 주성분을 분석함으로써 다른 여러 변수에 중복적으로 상관도가 높은 변수와 주성분을 유도하는데 연관성이 적은 변수를 주성분 변수 후보 대상에서 제외시키고자 한다. 고유벡터 계수 값에 의한 주성분 위계를 분석하고 위계가 낮은 주성분이 변수로 선정이 되는 것을 막고 또한 상관 분석을 통하여 데이터의 중복 발생이 데이터 편향을 유도하는 것을 최소화하 하고자 한다. 이를 통하여 주성분 변수 선정 시 데이터 편향성의 영향을 줄임으로써 실제 데이터의 특징을 잘 나타내는 주성분 변수를 선정하는 방법을 제안하고자 한다.

주택수요 예측인자 영향도 분석에 의한 상관인자선정 (The Correlation Factors on the Analysis of Demand Factors for Apartments)

  • 양승원;박근준
    • 한국건설관리학회논문집
    • /
    • 제6권1호
    • /
    • pp.80-88
    • /
    • 2005
  • 주택수요는 수요유발 상관인자를 주축으로 한 주택수요 예측모형에 의하여 그 수표량을 예측할 수 있다. 이때, 주택수요 예측모형은 상관인자의 영향도에 따라서 인자의 미세한 추이변화에 대해서도 수요의 변화폭을 민감하게 제시하게 된다. 이를 위하여 주택수요 예측에 동원 될 수 있는 여러 상관인자들 가운데 영향도가 가장 큰 인자가 무엇인지 찾아낼 필요가 있다. 이때 대상인자의 데이터는 횡단면자료(Cross Section Data) 혹은 시계열자료(Time Series Data)분석으로 수행된다. 즉, 영향도가 가장 큰 인자들을 찾아내는 방법마련이 필요하며 이후 이 방법에 따른 상관인자의 도출이 가능함에 따라 영향도가 가장 큰 인자를 발굴하는 방법을 제시하고 이에 의한 상관인자를 도출하는 것을 본 연구의 목적으로 한다.

Correlation Analysis of Atmospheric Pollutants and Meteorological Factors Based on Environmental Big Data

  • Chao, Chen;Min, Byung-Won
    • International Journal of Contents
    • /
    • 제18권1호
    • /
    • pp.17-26
    • /
    • 2022
  • With the acceleration of urbanization and industrialization, air pollution has become increasingly serious, and the pollution control situation is not optimistic. Climate change has become a major global challenge faced by mankind. To actively respond to climate change, China has proposed carbon peak and carbon neutral goals. However, atmospheric pollutants and meteorological factors that affect air quality are complex and changeable, and the complex relationship and correlation between them must be further clarified. This paper uses China's 2013-2018 high-resolution air pollution reanalysis open data set, as well as statistical methods of the Pearson Correlation Coefficient (PCC) to calculate and visualize the design and analysis of environmental monitoring big data, which is intuitive and it quickly demonstrated the correlation between pollutants and meteorological factors in the temporal and spatial sequence, and provided convenience for environmental management departments to use air quality routine monitoring data to enable dynamic decision-making, and promote global climate governance. The experimental results show that, apart from ozone, which is negatively correlated, the other pollutants are positively correlated; meteorological factors have a greater impact on pollutants, temperature and pollutants are negatively correlated, air pressure is positively correlated, and the correlation between humidity is insignificant. The wind speed has a significant negative correlation with the six pollutants, which has a greater impact on the diffusion of pollutants.

Short Bus contention 방식의 Priority Output Queuing Model의 분석 (The Analysis of Priority Output Queuing Model by Short Bus Contention Method)

  • 정용주
    • 한국정보처리학회논문지
    • /
    • 제6권2호
    • /
    • pp.459-466
    • /
    • 1999
  • I broadband ISDN every packet will show different result if it would be processed according to its usage by the server. That is, normal data won't show big differences if they would be processed at normal speed. But it will improve the quality of service to process some kinds of data - for example real time video or voice type data or some data for a bid to by something through the internet - more fast than the normal type data. solution for this problem was suggested - priority packets. But the analyses of them are under way. Son in this paper a switching system for an output queuing model in a single server was assumed and some packets were given priorities and analysed. And correlation, simulating real life situation, was given too. These packets were analysed through three cases, first packets having no correlation, second packets having only correlation and finally packets having priority three cases, first packets having no correlation, second packets having only correlation and finally packets having priority and correlation. The result showed that correlation doesn't affect the mean delay time and the high priority packets have improved mean delay time regardless of the arrival rate. Those packets were assumed to be fixed-sized like ATM fixed-sized cell and the contention strategy was assumed to be short bus contention method for the output queue, and the mean delay length and the maximum 버퍼 length not to lose any packets were analysed.

  • PDF

상관함수 기반 굴삭기용 과부하 검출 기법 (An Overload Detecting Method for an Excavator Based on the Correlation Function)

  • 유창호;고남곤;최재원;서영봉
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.703-710
    • /
    • 2010
  • In this paper, an overload detecting algorithm for an excavator is presented. The proposed overload detecting algorithm is based on the time series analysis especially correlation function. The main purpose of this paper is to prevent damage or crack from the fatigue loaded on an excavator in advance. Generally, the larger data, the longer processing time, and the amount of the data used in this paper are also large, especially every sampling period, 1600 data are gathered and calculated. So this paper focuses on minimizing the number of required sensors by using the correlation function. From the cross correlation function, similar pattern sensors are eliminated and dissimilar pattern sensors are considered, and from the auto correlation function, the overload can be detected. To prove the efficiency of the proposed overload detecting algorithm, this paper shows the computer simulation results.